
CKG: Dynamic Representation Based on Context
and Knowledge Graph

Xunzhu Tang∗
National Engineering Research

Center for Big Data Technology
and System, Services Computing

Technology and System Lab,
Cluster and Grid Computing Lab,
School of Computer Science and
Technology, Huazhong University

of Science and Technology
Wuhan, China

tangxz@hust.edu.cn

Tiezhu Sun
Momenta

Suzhou, China
suntiezhu@momenta.ai

Rujie Zhu
Department of Electrical

and Computer Engineering
University of Central Florida

Orlando, FL, USA
rujie.zhu@ucf.edu

Shi Wang∗
Institute of Computing

Technology, Chinese Academy
beijing, China

wangshi@ict.ac.cn

Abstract—Recently, neural language representation models
pre-trained on large corpus can capture rich co-occurrence
information and be fine-tuned in downstream tasks to improve
the performance. As a result, they have achieved state-of-the-art
results in a large range of language tasks. However, there exists
other valuable semantic information such as similar, opposite,
or other possible meanings in external knowledge graphs (KGs).
We argue that entities in KGs could be used to enhance the
correct semantic meaning of language sentences. In this paper,
we propose a new method CKG: Dynamic Representation Based
on Context and Knowledge Graph. On the one side, CKG can
extract rich semantic information of large corpus. On the other
side, it can make full use of inside information such as co-
occurrence in large corpus and outside information such as
similar entities in KGs. We conduct extensive experiments on
a wide range of tasks, including QQP, MRPC, SST-5, SQuAD,
CoNLL 2003, and SNLI. The experiment results show that CKG
achieves SOTA 89.2 on SQuAD compared with SAN (84.4), ELMo
(85.8), and BERTBase (88.5).

I. INTRODUCTION

The language representation models, such as ELMo [1],
OpenAI-GPT [2] and BERT [3] have achieved good per-
formance on a large range of NLP tasks including sentence
classification, question answering, and sentence tagging. Ex-
isting language models mainly focused on pre-training on
unstructured corpora with limited available information. For
example, polysemy is a pervasive phenomenon. To mitigate
it, current models require pre-training embedding on large
corpus and then fine-tune them on downstream tasks. It is
time-consuming and also difficult to capture more senses of
a word by pre-training and fine-tuning [1], [3]. For instance,
word apple has different meanings, including a fruit, a brand
or IT products. The corpora for training embedding should
be collected carefully to make sure different kinds of senses
of a word in question are included. After pre-training, it still
may be unclear how to interpret the embedding in downstream
tasks. Considering sentence “People in cities usually buy ap-

*Joint first authors

ples and other fruits in local markets”, downstream tasks need
much cost to fine-tune it before they learn the exact meaning
of word ‘apple’. Therefore, performance improvement may be
hindered by using unstructured training corpus only.

Existing methods predict the masked word based only on
its left or/and right context which are local and can not predict
the exact meaning of the word in the question. It will restrict
the power of the trained embedding if local context is not
large enough. The major limitation is that the context from
few surrounded words is local. Now, a wealth of knowledge
is available in different forms (i.e., wikipedia, Freebase) on the
web due to the advent of open data initiative. And it is growing
rapidly. For example, the volume of data connected by Linked
Data 1, a practice for sharing and connecting data using RDF
specification 2, increases from 93 datasets (March 2009) to
1,239 datasets (as of March 2019). It is thus imperative to
advance pre-training.

We propose model CKG to refine semantic of words by
knowledge graph, which can make use of global knowledge.
The proposed language models are not pre-trained on un-
structured texts but on refined ones using knowledge graph,
which can strengthen the meaning of each polysemous word
in its context. We use BiLSTM to pre-train our model for
reason that it uses both left-to-right and right-to-left LSTMs to
generate features, and long input will worsen the pre-training
performance. Naturally, we introduce 1D-CNN layer before
BiLSTM for extracting features so that long input is shortened.
We compare CKG with ELMo, BERT, and other models on
wide variety of tasks. CKG achieves significant performance
improvement compared to existing methods.

The contributions of our work are as follows:

• We propose CKG to mitigate polysemy by extending
the words using knowledge graph and then fusing the
semantic of words.

1http://linkeddata.org/home
2https://www.w3.org/2001/sw/wiki/RDF

• We optimize the training process by introducing 1D-CNN
layer before BiLSTM to extract features so that dimen-
sion reduction can reduce computational costs further.

• We compare our method with ELMo, BERT, word2vec,
GloVe in multiple tasks (i.e., QQP, MRPC, and SST-
5). Further, CKG+ELMo get SOTA 89.2 on SQuAD
task compared with SAN(84.4), pure ELMo(85.8), and
BERTBASE(88.5).

II. RELATED WORK

Word representation has been the most important foundation
for NLP tasks. Context-independent representations [4], [5]
provide pre-trained word vectors from unlabeled text. They
achieved good performance on several major NLP bench-
marks including SNLI and SQuAD. These approaches have
been generalized to sentence embedding and even paragraph
embedding. However, these approaches for learning word
vectors from large corpus only allow one context-independent
representation for each word, making it difficult to understand
text containing polysemous words. This problem is called
unsupervised word sense disambiguation.

Some previous works have focused on enriching embedding
with subword information [6], learning separate vectors for
each word sense [7] and splitting word into several word
senses based on graph clustering [8]. In addition, [9] uses
world knowledge in the form of KGs to enhance learning mod-
els. Furthermore, [10], [11] employs general KGs information
to improve BERT. Inspired by [8]–[10], our approach extends
senses of central words by traversing its closest neighbors in
knowledge graph. Such an approach can enrich embedding
with different senses.

Other recent works have paid attention on learning context-
dependent representations. Sentence or document encoders
have been pre-trained on unlabeled texts and fine-tuned for
a supervised downstream task to generate contextual token
representations [2]. The advantage of these models is that
few parameters need to be learned from scratch and they
can mitigate polysemy problem to some extent. For example,
ELMo [1] uses two BiLSTM layers to encode the context from
large corpus on character level for semantic scalability, and
fine-tunes word embedding on downstream tasks. Therefore,
the model do not only captures complex characteristics of
a word use but also mitigates polysemous problems by its
dynamic word representations in different contexts. ELMo is
a feature-based approach, which means that the pre-trained
word representations can be added to downstream models as
additional features. Different from ELMo, BERT [3] takes
bidirectional encoder representations from transformers, which
is designed to pre-train on large unlabeled corpus with masked
language model on both left and right context in all layers.
BERT created state-of-the-art performance in a large range of
NLP tasks, but it costs too much time to do pre-training and
fine-tuning. And similar to ELMo, when it comes to complex
text with polysemous words, these approaches become ineffi-
cient.

In this paper, we will take full advantage BiLSTM for
text encoding and benefit from knowledge graph to mitigate
polysemous problems on NLP tasks. We call the approach
in this paper as CKG. CKG is divided into two main parts,
of which one is used to extend and refine semantic of the
polysemous entities in a given text and the other extracts
feature for dimension before pre-training. These two parts will
be introduced as follows, and at same time we will show that
CKG work well across a broad range of diverse NLP tasks.

III. DETAILS OF CKG MODEL

In this section, we introduce CKG and its detailed im-
plementation, including the model architecture in Section
III-A, the semantic extension designed for capturing more
information from KGs in Section III-B and semantic fusion
designed for extracting the correct information out of the
extensions in Section III-C, and the details of the pre-training
procedure in Section III-D.

People in cities markets…

…

Semantic extension with KGs

human

citizen

person

settle-
ment

capital

seafood-
city

super-
market

Stock-
market

Financial
-market

Semantic calculation

citizen settle-
ment

super-
market

…

…

A
verage sem

antic
(G

loV
e

V
ector)

People in markets

NN recognition

Entity output Extractor

Entity input

Token input

…

Information fusion

Embedding layer
&

Aggregator

Fig. 1: Architecture of CKG, which consists of two main parts (i.e.,
Extractor and Aggregator).

A. Model Architecture

As shown in Figure 1, the whole architecture of CKG
consists of two main modules: (1) the semantic extension
(Extractor) responsible to capture multiple concrete meanings
of some entities they could have, and (2) semantic fusion
(Aggregator) responsible to figure out the most possible ones
of those extended meanings in a concrete sentence or context
and fusing the results with central entities in footnote style.

To make the description more specific, we denote the
input sequence as {w1,w1,...,wn} 3, the tokens of extended
entities as {e1, e2, ..., em} 4. We employ two kinds of initial
ways of embedding to represent the words 5 in corpus and
their extended entities. One is GloVe vector responsible to
do calculation in Aggregator, and another one is embed-
ding function from Pytorch responsible to initialize fused
input tokens before pre-training. Given a token sequence

3wi means the i-th token and in this paper, tokens are at the word level.
4We take the name style from [10]
5In this paper, we use nouns to represent the central entities to be extended.

{w1,w1,...,wn}, we figure out its corresponding entity se-
quence {e1,1, e1,2, e1,3, e2,2, ..., em,1, em,2, em,3} by Extrac-
tor.

By similarity calculation, we finally get only one extension
for each central entity. Input tokens and extended entities can
get features {w1,w2, ...,wn}, {e1,1, ..., em,3} as follows:

{w1,w1, ...,wn} = GloV e({w1, w2, ..., wn}) (1)
{e1,1, ..., em,3} = GloV e({e1,1, ..., em,3}) (2)

where GloVe(·) is a initial word-vector function which can map
a word to GloVe vector [5], and em,1, em,2, em,3

6 are top 3
extensions of central entity m.

Firstly, CKG sums GloVe vectors of w1, w2, ..., wn and fig-
ure the cosine value between each of {em,1, em,2, em,3} (em,i
is the i-th hop extension of entity m) and the average vector
of w1, w2, ..., wn. Then, it employ the one with minimum
angle to represent the meaning of entity m in sequence {w1,
w2,...,wn}.

After computing {e1,1, ..., em,3} with average vector of
{w1,w2,...,wn}, CKG gets the most suitable extensions to
represent the origin entities in the given sequence. Aggregator
fuses these extensions with origin entities in the given se-
quence to inject the meanings of extensions out of KGs. We
can get fused sequence as follows,

Aggregator({w1, w2, ..., wn}, {e1,1, ..., em,3})
= {w1, e1,2, ...,wn, em,3} (3)

where Aggregator(·) is a function responsible for fusing ex-
tensions with their corresponding central entities. More details
of Extractor and Aggregator will be introduced in Section
III-B and III-C.

B. Semantic Extension Using Knowledge Graph (Extractor)

To understand the true meaning or sense of a word with
multi meanings in a sequence, we should know potential
meanings of the word. Both context-independent [4], [5] and
contextual [1]–[3] representation models can not capture all
the meanings of entities in a sequence. Therefore, we extend
meanings of the entities in a sequence through KGs as more
as possible 7. However, it remains a problem which n-th-hop
of traversed entity should be taken. In fact, it would be quite
time-consuming if we take more than two-hop entities into
account.

Given an extended route (rem,1,r em,2,r em,3, ...,r em,k)
where rem,k represents the k-th hop extension in route r of
central entity m, rem,k has influence on rem,k−1, and rem,k−1
has influence on rem,k−2,..., rem,2 has influence on rem,1.
We donate the influence as ⇐ and elements a set, and the
smaller index means more influence. So, we can get that,
rem,k−1 ⇐ (rem,k), rem,k−2 ⇐ (rem,k−1,rem,k),..., rem,1 ⇐
(rem,2,rem,3,...,rem,k). After simple computing, we get that:

rem,1 ⇐ (rem,2,r em,3, ...,r em,k−1,r em,k)

rem,1 ⇐ ((rem,3, ...,r em,k), ..., (rem,k), 0) (4)

6We only choose the top 3 extensions of each central entity.
7In this work, the one of KGs we take is Dbpedia.

In Equation 4, every former element in the set cover the
information of the later ones, which satisfies the Markov prop-
erty (sometimes characterized as “memory lessness”) [12].
Therefore, we can convert the problem mentioned above into
a Markov chain. In other words, we only take the first hop
extensions into account while traversing entities in KGs of
the central entities.

To be specific and easy-understanding, we give an example
to describe the process of extension. Given a sentence “People
in cities usually buy apples in the local markets.”, we employ
tool postag [13] of package nltk in python to extract properties
of words in the sentence and we get that [(‘People’, ‘NNS’),
(‘in’, ‘IN’), (‘cities’, ‘NNS’), (‘usually’, ‘RB’), (‘buy’, ‘VBP’),
(‘apples’, ‘NNS’), (‘in’, ‘IN’), (‘the’, ‘DT’), (‘local’, ‘JJ’),
(‘markets’, ‘NNS’)]. CKG can easily capture the entities
[‘people’, ‘city’, ‘apple’, ‘market’] because they all are nouns.
Then we traverse the central entities in knowledge graph and
extend the first hop extensions of them which is described as
Figure 2. Every entity may have many extensions in KGs, but
for the simplicity and low computing cost, we only choose
the top 3 extensions of each central entity by the similarity
calculation of their GloVe vectors. For the convenience, we
donate the extensions of entity e as set dt[‘e’]. So, dt[‘apple’]
= [‘tree’, ‘culture’, ‘fruit’]. However, in general, each word in a
specific sequence has only one meaning. Therefore, it turns to
be a problem that which extension will be used to emphasize
the meaning of the central entity. This will be discussed in
Section III-C.

apple
apple

Inc

fruit Walmart

branch

branch

stored in

branch

supermarket

market
branch

stock
market

Financial
market

tree city sea-food city

located in

planted in

branch

branch

stored in

Fig. 2: Partial Knowledge Graph from Dbpedia. The figure shows
that ‘apple’ could be a kind of food, as well as a company. We can
get the precise meaning of ‘apple’ by the neighbours around it.

C. Fusing Extensions and Central Entities (Aggregator)

After we extracted top 3 possible meanings for each central
entities, it turns to be a problem that which one extension will
be chosen to represent the true meaning of the central entity
in a specific sequence. In this section, we present Aggregator
to mitigate this problem.

In sequence {w1, w2, ..., wn}, we can get the initial vectors
{w1,w2, ...,wn} by the Equation 1. The extensions of enti-
ties in the sequence can get initial vectors by the same way and
we get that {e1,1, ..., em,3}. CKG sums {w1,w2, ...,wn}
and then figure out the average of them, which is shown in
Equation 5.

Vavg =

∑
iwi

{len(w1, w2, ..., wn)}
(5)

em → argmax
kε{em,1,em,2,em,3}

(cos (GloV e(k), Vavg)) (6)

Then, CKG figures out the cosine value between each of
{em,1, em,2, em,3} with the average of the {w1,w2,...,wn} and
employ the one which the minimum angle to represent the
meaning of entity m in the sequence, which is shown in Equa-
tion 6. In Equation 6, we define a function cos (a, b) which is
used to figure out the cosine value of vector a and b. Besides,
we donate the relation “with the meaning of ” as symbol ‘→’,
and Function argmax

kε{em,1,em,2,em,3}
(cos (GloV e(k), Vavg)) means

that we take the element k which makes cos (GloV e(k), Vavg)
maximum.

In the example of Section III-B, em= ‘apple’, and top 3
extensions of apple in KGs is [‘tree’, ‘culture’, ‘fruit’], which
means dt‘apple′ = [‘tree’, ‘culture’, ‘fruit’] (i.e., for ‘apple’,
e1 = ‘tree’,e2 = ‘culture’, e3 = ‘fruit’). After computing ei
with Vavg with Equation 6, we can easily get that ‘apple’ →
‘fruit’. Similar to ‘apple’, ‘people’ → ‘citizen’, and ‘city’ →
‘settlement’, and ‘market’ → ‘supermarket’.

Finally, we add these precise meanings to the origin se-
quence with the form of note. As a result, we get a new
sentence “People (citizen) in cities (settlement) usually buy
apples (fruit) in the local markets (supermarket)”. And use
this new sentence to replace the original input before training
in Figure 3 in the next section.

D. Semantic Feature Extraction for Dimension Reduction

After semantic extension and fusing, we need to train a
context-dependent representation model and test the perfor-
mance of CKG. It proved that BiLSTM is a great sequence-
to-sequence model which was widely used to train language
models and has a good performance on most NLP benchmarks.
Therefore, in this section, we take bidirectional LSTM to train
our language model.

However, BiLSTM has a step size limit to the length of
input sequences because it is a sequential model. The general
step size limit ranges from 250 to 500. If the length of the
sequential step of BiLSTM is oversize, the gradient will vanish
soon. Moreover, it is time-consuming for BiLSTM because the
outputs of prior cells will be used as inputs of the next cell.
While if we reduce the dimension of the input sequence of
BiLSTM or the input is full features, the time costs for training
would be greatly saved and the gradient vanishing would also
be avoided.

Before BiLSTM layer, we introduce a 1D-CNN layer for
identifying patterns within data. The patterns will then be
used to form more complex patterns in higher layers. So,
after 1D-CNN extraction processing, the information of origin
sequence (t1, t2, . . . , tn) can be represented as a middle state
embedding sequential (c1, c2, . . . , cm) where m < n. Then
we put the middle sequential into BiLSTM layer in CKG.
A forward language model computes the probability of the

𝑬𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈 𝑳𝒂𝒚𝒆𝒓 𝑪𝒐𝒏𝒗 𝒑𝒐𝒐𝒍𝒊𝒏𝒈

𝑦
3ℎ

3 ℎ
3

LSTM
LSTM

LSTM

LSTM
LSTM

LSTM

𝑒3

𝑦
6

𝑦
7

……
ℎ
6

ℎ
7

ℎ
6

ℎ
7

𝑒6
𝑒7

B𝒊𝑳𝑺𝑻𝑴 𝑳𝒂𝒚𝒆𝒓

D
ense

𝑶𝒖𝒕𝒑𝒖𝒕

Softm
ax

C
RF
…

Fig. 3: Semantic feature extraction from input embedding so that we
can not only save the training time, but also avoid vanishing gradient.

sequence by modeling the probability of ck given the history
(c1, c2, . . . ck−1).Each position k of forward LSTM will output
a context-dependent representation

−→
h LM
k,j (where j = 1, 2, . . . ,

L). Similar to forward LSTM, the backward LSTM will get←−
h LM
k,j . We connect results of forward and backward LSTMs

as hLMk,j =
−→
h LM
k,j +

←−
h LM
k,j . The probability of the sequence is

shown as Equation 8.

p(c1, c2, . . . , cm) =

m∏
k=1

p(ck|c1, c2, . . . , ck−1) (7)

p(c1, c2, . . . , cm) =

m∏
k=1

p(ck|ck+1, ck+2, . . . , cm) (8)

We design a loss function to adjust CKG parameters, which
is shown as the Equation 9. The goal in our work is to make
the Equation 9 maximum. It needs to modify the weights and
values of our network until we make the result of Equation 9
maximize. And then we use output layer like Softmax layer,
crf layer to do the downstream tasks.

log p(ck|c1, . . . , ck−1) + log p(ck|ck+1, . . . , cm)) (9)

IV. EXPERIMENTS

In this section, we present the details of pre-training CKG
and the fine-tuning results on nine NLP datasets, which contain
knowledge-driven tasks and common NLP tasks. In this paper,
we train BiLSTM on a corpus with approximately 30 million
sentences [14] which is mentioned in [1]. The pre-trained
biLSTM here is similar to the architectures in [1].

A. Qualitative Argument

In order to demonstrate the performance of enhancing
semantic in specific context, we conduct CKG on an entity
typing task with a well-established dataset FIGER [15]. The
training set of FIGER is labeled with distant supervision, and
its test set is annotated by human. Following the evaluation
method in [16], we compare NFGEC, ERNIE, CKG on
FIGER, and adopt strict accuracy, loose macro, loose micro
scores for evaluation standard. The experimental results on
FIGER is shown in Table I, the baseline methods for entity
typing we compare our models with are as follows:
• NFGEC [16]. NFGEC is the SOAT model on FIGER,

which combines the representations of three-granularity
(i.e., entity mention, context, and extra hand-craft) fea-
tures as input.

• ERNIE [10]. ERNIE is a pre-trained method considering
both large-scale textual corpora and KGs, which outper-
forms on FIGER.

TABLE I: Results of various models on FIGER(%)

Model NFGEC
(Attentive)

NFGEC
(LSTM)

ERNIE
(tsinghua) CKG

Acc. 54.53 55.60 57.19 58.84
Macro 74.76 75.15 76.51 76.23
Micro 71.58 71.73 73.39 75.24

Table I shows the results in FIGER, and we can find that:
(1) ERNIE achieves higer accuracy than NFGEC method,
indicating the external knowledge regularizes ERNIE to avoid
fitting the noisy labels and accordingly benefits entity typing.
(2) CKG has lower macro than the best ERNIE method, but
it significantly improves the strict accuracy and micro, which
achieves 58.87% in accuracy (2.89% higher than ERNIE) and
76.23% (2.52% higher than the second score). Obviously,
CKG can be used to reduce the noisy label challenge in FIGER
by injecting the external information from KGs.

B. Benchmarks

To make a objectively comparison with baseline models, we
conduct experiments separately on the following datasets.
• Word analogy task [4]. The dataset is divided into 14

subsets and made up of 19,544 question like “a is to b
like c is to d”.

• Quora Question Pairs (QQP) [17]. QQP is a binary classi-
fication task including 400,000 question pairs, where we
need to value if two questions in each pair are equal or
not.

• Microsoft Research Paraphrase Corpus (MRPC) [18].
MRPC contains sentence pairs which are extracted from
online news sources, in which there are annotations for
whether the sentences are equal in semantic from human.

• Stanford Sentiment Treebank (SST-5) [19]. SST-5 is
a binary single-sentence classification task from the
Stanford Sentiment Tree bank, including five levels of
comment(from very negative to very positive), used to
describe a sentence out of a movie review.

• Stanford Question Answering Dataset (SQuAD v1.1)
[20].SQuAD consists of questions raised by a crowd of
workers on a set of Wikipedia articles, each of which is
a piece of text or span from the corresponding reading
paragraph.Each pair contains a question and a passage
where we can find the answer.

• Named Entity Extraction (NER) [21]. NER includes
1,393 English and 909 German news articles. To build
the English-language corpus we need the RCV1 Reuters
corpus where entities are annotated with LOC (location),
ORG (organisation), PER (person) and MISC (miscella-
neous).

• Stanford Natural Language Inference (SNLI) [22]. SNLI
takes a pair of sentences and predicts if the former one

cover the meaning of the later one, which collects 570k
English sentence pairs written by human and labeled with
entailment, contradiction and neutral as the judgment.

C. Results

TABLE II: Comparison among CKG+ELMo and other models in
QQP, SST-5, and MRPC tasks

Baseline Pre-OpenAI
SOTA

BiLSTM+
ELMo+Attn

ERNIE
(tsinghua)

QQP 93.2 90.4 93.5
MRPC 86.0 84.9 88.9
SST-5 66.1 64.8 71.2

ERNIE2.0
(baidu) CKG CKG+ELMo

QQP 90.4 92.7 93.2
MRPC 88.9 88.2 86.3
SST-5 70.4 70.2 72.3

Word analogy task. We combine the part one of CKG
shown as Figure 1 with GloVe to retrain wikipedia2014 and
get a new word vectors which improve the score on word
analogy task to 79.37. Main details are shown in the Table III.
Table III indicates that we get a higher score based spearman
algorithm, comparing with different models like CBOW, SG,
and pure Glove. Table III shows CKG+GloVe gets 10.44 score
more than pure GloVe on word analogy task.

TABLE III: Comparison of models in word similarity with rank
of sepearman. And the comparison of word analogy in semantic,
syntactic, average.

Baseline Semantic Syntactic Average Rank of Spearman
CBOW 73.58 65.95 69.5 73.25

SG 65.62 56.61 60.64 68.69
GloVe 71.39 53.72 61.57 68.93

CKG+GloVe 78.34 69.32 73.83 79.37

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.6

0.7

0.8

0.9

1.0

Train acc Test acc

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epoch

0.05

0.20

0.35

0.55

0.70

Train loss Test loss

Fig. 4: The detailed information on the dataset of SNLI. The upper
figure represents the accuracy results of training and test in different
epochs, and the lower figure indicates the losses of them.

QQP, MRPC, and SST-5. In QQP, CKG+ELMo gets score
93.2 equals Pre-OpenAI SOTA and better than pure ELMo
(90.4) (shown as Table II), but ERNIE performs better than
our CKG. In both MRPC and SST-5, CKG+ELMo gets score
86.3/72.3 which is better than the other Pre-OpenAI SOTA and

pure ELMo. In addition, CKG+ELMo performs better than
other models on SST-5.

SQuAD (v1.1). Our baseline [1] is an improved version
of an unsupervised LM in [23]. It is deep, and in the sense,
ELMo representations are a function dealing with all of the
internal layers of the biLM. We combine CKG and BiDAF
[24] to conduct experiment on SQuAD. Table V shows results
on the [20] with combination of CKG and ELMo. In [20], there
will give a question and a paragraph containing the answer
to the former question. ELMo gets score 85.8 based on the
baseline of SAN with BiLSTM. BERTBASE gets 88.5 with
its outstanding pre-training parameters and fine-tuning part.
Above all, CKG+ELMo get a higher score of 89.2, which
proves the dynamic adjustment model in CKG effective in
natural language processing task. As a fine-tuning tool, the
CKG always performs well considering the global factor.

TABLE IV: Analysis for SQuAD, SNLI, and NER, comparing
different choices. We compares systems with pure GloVe, ELMo, the
combination of GloVe and CKG shown as Figure 1 and only CKG.
The set of comparison of the three models. ELMo has achieved a
great performance in NER task, while CKG performs better.

Task GloVe ELMo CKG+GloVe CKG
SQuAD 80.8 85.8 85.6 88.7
SNLI 88.1 89.1 90.2 91.1
NER 87.7 91.9 - 92.56

TABLE V: The set of comparison of the five models. We com-
pare SAN, ELMo, BERTBASE , with CKG and CKG+ELMo across
SQuAD task. The “INCREASE” column lists improvement over our
baseline.

Model SAN ELMo BERT
(base) CKG CKG

+ ELMo
SOTA 84.4 85.8 88.5 88.7 89.2

INCREASE baseline 1.66% 4.86% 5.09% 5.69%

SNLI. Our baseline is [1], and we combine CKG with
ESIM [25] to deal with semantic entailment task. ESIM is a
sequence model which uses a biLSTM to encode the premise
and hypothesis. And ESIM has three layers including a matrix
attention layer, a local inference layer, and biLSTM inference
composition layer, followed by a pooling operation before the
output layer. In general, the combination of CKG and ESIM
improves accuracy by an average of 2.7%. CKG pushes the
overall accuracy to 91.1%, exceeding [1].

NER. Our baseline [1], [23] uses pre-trained word embed-
dings trained on a big corpus, and includes a character-based
CNN representation for word-level scalability, two biLSTM
layers for hidden states and a conditional random field (CRF)
loss. As shown in Table IV, CKG with CRF achieves the score
92.56. The main difference between CKG and the previous
great work from [1] is that we took the semantic refining
before pre-training into consideration.

V. CONCLUSION

This paper presents a new model called CKG, including
extending and refusing semantic of entities by KGs. To obtain
more meanings of a polysemous entity, we traverse its neigh-
bours in Dbpedia, and get neighbours within one-hop as its
extensions. Then we choose one most similar to the average
meaning of the rest entities to represent the true meaning of the
central entity. As a result, we can mitigate polysemy problem
in NLP. In addition, CKG can improve the semantic in entity
type classification, and outperforms in multiple NLP tasks.

REFERENCES

[1] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of NAACL, 2018.

[2] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” Technical report,
OpenAI, 2018.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of NAACL-HLT, 2019.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proceedings of NIPS, 2013, pp. 3111–3119.

[5] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proceddings of EMNLP, 2014, pp. 1532–1543.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” TACL, vol. 5, pp. 135–146, 2017.

[7] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum, “Efficient
non-parametric estimation of multiple embeddings per word in vector
space,” in Proceedings of EMNLP, 2014, pp. 1059–1069.

[8] H.-S. Chang, A. Agrawal, A. Ganesh, A. Desai, V. Mathur, A. Hough,
and A. McCallum, “Efficient graph-based word sense induction by
distributional inclusion vector embeddings,” in Proceedings of NAACL-
HLT, 2018, p. 38.

[9] K. Annervaz, S. B. R. Chowdhury, and A. Dukkipati, “Learning beyond
datasets: Knowledge graph augmented neural networks for natural
language processing,” in Proceedings of NAACL-HLT, 2018, pp. 313–
322.

[10] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie:
Enhanced language representation with informative entities,” in Proceed-
ings of ACL, 2019, pp. 1441–1451.

[11] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu,
H. Tian, and H. Wu, “Ernie: Enhanced representation through knowledge
integration,” arXiv preprint arXiv:1904.09223, 2019.

[12] F. SPITZER, “Interaction of markov processes,” ADVANCES IN MATH-
EMATICS, vol. 5, pp. 246–290, 1970.

[13] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Stanford University, Tech. Rep., 2008.

[14] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and
T. Robinson, “One billion word benchmark for measuring progress in
statistical language modeling,” arXiv preprint arXiv:1312.3005, 2013.

[15] X. Ling, S. Singh, and D. S. Weld, “Design challenges for entity
linking,” TACL, pp. 315–328, 2015.

[16] S. Shimaoka, P. Stenetorp, K. Inui, and S. Riedel, “An attentive neural
architecture for fine-grained entity type classification,” in Proceedings
of AKBC (WS), 2016, pp. 69–74.

[17] Z. Chen, H. Zhang, X. Zhang, and L. Zhao, “Quora question pairs,”
2018.

[18] W. B. Dolan and C. Brockett, “Automatically constructing a corpus of
sentential paraphrases,” in Proceedings of IWP, 2005.

[19] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of EMNLP, 2013, pp. 1631–1642.

[20] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” in Proceedings of
EMNLP, 2016, pp. 2383–2392.

[21] E. F. Sang and F. De Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition,” Development,
2003.

[22] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large
annotated corpus for learning natural language inference,” arXiv preprint
arXiv:1508.05326, 2015.

[23] M. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semi-supervised
sequence tagging with bidirectional language models,” in Proceedings
of ACL, 2017, pp. 1756–1765.

[24] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirec-
tional attention flow for machine comprehension,” arXiv preprint
arXiv:1611.01603, 2016.

[25] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen,
“Enhanced lstm for natural language inference,” in Proceedings of ACL,
2017, pp. 1657–1668.

	Introduction
	Related Work
	Details of CKG Model
	Model Architecture
	Semantic Extension Using Knowledge Graph (Extractor)
	Fusing Extensions and Central Entities (Aggregator)
	Semantic Feature Extraction for Dimension Reduction

	Experiments
	Qualitative Argument
	Benchmarks
	Results

	Conclusion
	References

