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Abstract—Recently, language representation techniques have
achieved great performances in text classification. However,
most existing representation models are specifically designed for
English materials, which may fail in Chinese because of the huge
difference between these two languages. Actually, few existing
methods for Chinese text classification process texts at a single
level. However, as a special kind of hieroglyphics, radicals of Chi-
nese characters are good semantic carriers. In addition, Pinyin
codes carry the semantic of tones, and Wubi reflects the stroke
structure information, etc. Unfortunately, previous researches
neglected to find an effective way to distill the useful parts of these
four factors and to fuse them. In our works, we propose a novel
model called Moto: Enhancing Embedding with Multiple Joint
Factors. Specifically, we design an attention mechanism to distill
the useful parts by fusing the four-level information above more
effectively. We conduct extensive experiments on four popular
tasks. The empirical results show that our Moto achieves SOTA
0.8316 (F1-score, 2.11% improvement) on Chinese news titles,
96.38 (1.24% improvement) on Fudan Corpus and 0.9633 (3.26%
improvement) on THUCNews.

I. INTRODUCTION

Different from the English-like languages whose words can
be spelt out according to their pronunciation and meanings
are related with words themselves, semantics of Chinese are
relevant to characters and highly associated with component
parts (i.e., radicals [1], [2]), structure of characters (i.e., Wubi
codes [3]), and tones of pronunciation (i.e., Pinyin codes [4]).
Over the past years, many works applied only one of different
aspects of Chinese characters on sequence-to-sequence model
to enhance the ability of capturing semantic features. We
advocate fusing all the four aspects of Chinese characters
(i.e., multiple joint factors) to enhance Chinese Embedding,
which would bring much better performance for Chinese texts
classification [5].

As a kind of pictograph language, the uniqueness of Chinese
is that its character system is based on hieroglyphics, which
means that Chinese characters have their raw meanings. In
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other words, not only Chinese characters themselves can
express specific meanings, but also their component parts are
important carriers of semantics, which is the main point where
Chinese differ from English. As shown in Figure 1(a), ‘盟’
(blood pledge) consists three radicals : ‘日 (sun)’, ‘月’ (moon),
and ‘皿’ (a kind of vessel). Furthermore, the positions of these
radicals in characters are also significant in hieroglyphics. For
example, as shown in Figure 1(b), ‘花’ (flower), ‘草’ (grass),
and ‘莲’ (lotus) have one common radical ‘艹’, the same
structure (upper-down), and the same position (i.e., ‘艹’ is in
the upper position, which was recorded as ’a’ in Wubi codes),
which means they are all plants. It is not difficult to see that
radicals and Wubi codes could help us to recognize semantics
for classifying Chinese texts. In addition, Pinyin codes could
also help us to capture the semantic of tone, as shown in Figure
1(c).

Additionally, there has been a lot of works aiming to
employ Wubi codes on Chinese Word Segmentation (CWS)
[3], radicals on Chinese text classification [1], [2], and Pinyin
codes on Chinese embeddings [4]. However, these works
simply use single aspect of characters like radicals to enhance
character-level embeddings.

Inspired by the importance of radicals of characters, Wubi
codes, and Pinyin codes, we conduct an explorative study in
Chinese text classification with attention mechanism to jointly
leverage four granularities of features, which we call Moto in
this paper. The main contributions are threefold:

• We first employ the attention mechanism to capture the
effective parts four-granularity features (i.e., characters,
radicals, Wubi codes, and Pinyin codes.)

• We first design a novel mechanism to confirm the weights
among these four-granularity features dynamically.

• We conduct extensive experiments on four real-world
and public datasets in four granularities respectively,
and demonstrate the effectiveness of characters, radicals,
Wubi codes, and Pinyin codes.
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Fig. 1: We employ three kind of representations to enhance the character embedding. Figure (a) indicates that radicals can show more details
of characters; Figure (b) shows that Wubi code can capture the structure information of characters; And figure (c) expresses that the Pinyin
(with pronounce) is important to Chinese characters.

II. MULTIPLE EMBEDDINGS

In this section, we will discuss the priority of employ-
ing four different granularities, including characters, radicals,
Wubi codes, and Pinyin codes, as shown in Figure 2.

Character is usually recognized as the smallest unit to
process Chinese text classification. Recent works show that
character embeddings are the most fundamental inputs for
neural networks [3], [6]–[8] since it is easy to learn contex-
tual information with sequence-to-sequence models. However,
Chinese character system is based on hieroglyphics, whose
component parts of characters are also the carriers of seman-
tics.

Radical or radical-like components serving as the basic
units for building Chinese characters has been explored in [1],
[9]. Commonly, radicals has the following two features. The
first one is that one radical normally has one or two types.
‘言’ (speak) is itself, but it becomes ‘讠’ in character ‘语’.
The second is that radicals have specific meanings. In Figure
1(a), the character ‘语’ (talk or speak) have radicals : ‘讠’ (the
same as 言, speak) and ‘吾’ (I). Obviously, radical provides
extra photographic features of characters.

Wubi is another effective representation of Chinese charac-
ters, which includes more comprehensive structure information
compared to radical. Each element in a Wubi code represents
a type of structure (or stroke) in characters. In Figure 1(b),
‘花’ (flower), ‘草’ (grass), and ‘莲’ (lotus) are all related to
plants, and their Wubi codes ‘awxb’, ‘ajj’, and ‘alpu’ have
one common letter ‘a’, which is corresponding to radical ‘艹’.
Therefore, Wubi is an efficient approach to capture structure
features of Chinese characters.

Pinyin is a English-like expression approach of Chinese
characters. Besides, Pinyin is highly relevant to semantics -
one character may have multiple pronunciations corresponding
to different semantic meanings [3], which is called polyphone

in Chinese. Figure 1(c) shows several polyphone characters.
‘中’ has two pronunciations (Pinyin). When pronounced as
‘zhōng’ in ‘中心’, it means ‘center’. However, when it refer
to the meaning of ‘be hit by’ when pronounced in ‘中奖’.
Obviously, it is beneficial for Chinese characters to use Pinyin
code to capture phonetic information.

III. DETAILS OF MOTO MODEL

In this section, we introduce our joint enhanced character
embedding model (Moto), which utilizes radical, Wubi code,
and Pinyin as supplementary input text. The challenge is that
how to distill the important parts of these factors and how
to conform the weights among them. The paper extends the
method of attention mechanism [10] to infer the weights,
which will be discussed in III-C. As shown in Figure 2, Moto
mainly contains four parts: Input Layer, Bidirectional LSTM
Layer, Attention Layer, and Prediction Layer.
A. Input Layer

Given a Chinese-character sequence C which contains lc
characters, i.e., C = {c1, c2, . . . , clc}, where each character ci
(1 ≤ i ≤ lc (length of characters)) is an independent item in C.
Meanwhile, C will be mapped into radicals, Wubi, and Pinyin
respectively by the usage of Open Chinese dictionary 1, Wubi
Library 2, and Pypinyin Library 3, i.e., lr (the length of radi-
cals) radical-level radicals R={r1, r2, . . . , rlr}, lw (the length
of Wubi codes) Wubi codes W={w1, w2, . . . , wlw}, and lp (the
length of Pinyin codes) Pinyin codes Py={py1, py2, . . . , pylp}.
Then we retrieve four granularities of features (i.e., C, R, W,
Py) and obtain four embedding matrices using word2vec tool
4 [11]. As shown in Figure 2, the embedding of sequence C

1http://www.kaifangcidian.com/han/chaizi
2https://github.com/sfyc23/python-wubi
3https://pypi.org/project/pypinyin/
4https://radimrehurek.com/gensim/
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Fig. 2: Network architecture of Moto, including four-granularity representations of Chinese: Radicals, Wubi, Pinyin, and Characters.

can be represented of Ec= {ec1, ec2, . . . , eclc,} (where eci is the
representation of ci). Similarly, Er= {er1, er2, . . . , erlr,} (where
eri is the representation of ri), Ew= {ew1 , ew2 , . . . , ewlw,} (where
eci is the representation of ci), Epy= {epy1 , e

py
2 , . . . , e

py
lp ,}

(where epyi is the representation of pyi). For simplicity, we
set the vector dimension of each level embeddings as D,
which means Ec ∈ Rlc×D, Er ∈ Rlr×D, Ew ∈ Rlw×D,
Epy ∈ Rlp×D. Then we feed them in BiLSTM layer directly.

B. Bidirectional LSTM Layer

In this section, we employ BiLSTM to capture contextual in-
formation of input sequence and obtain independent-contextual
representation. LSTM [12] is an advanced version of recurrent
neural network (RNN) with extra forget and memory which
are employed to alleviate the gradient vanishing problem and
keep the term information as long as possible. Given a specific
feature embedding sequence E= {e1, e2, . . . , en}, the whole
progress in the forward LSTM is calculated as follows:

−→
it−→
ft−→ot−→
c̃t

 =

 σ
σ
σ

tanh

(WT

[
et−−→
ht−1

]
+ b

)
(1)

−→ct = ft ∗ −−→ct−1 +
−→
it ∗
−→
c̃t

−→
ht = −→ot ∗ tanh−→ct

(2)

where it, ft, ot, and c̃t denote a set of input, forget, output,
and new layer to update current information ct respectively.
Moreover, W equals to the concatenation of Wi (a matrix
parameter in input gate), Wf (a matrix parameter in forget
gate), Wo (a matrix parameter in output gate), and Wc (a
matrix parameter in tanh layer). The progress above can be
described as equation W = Wi ⊕ Wf ⊕ Wo ⊕ Wc, where
symbol ⊕ represents the concatenation function. Similar to W ,
b= bi ⊕ bf ⊕ bo ⊕ bc. In addition, symbol σ(·) indicates the
sigmoid function. Similar to forward LSTM, the hidden state
of t-th step in the backward LSTM can be represented as

←−
ht .

Then we concatenate
−→
ht and

←−
ht as yt, which is the hidden

output of each BiLSTM cell at the t-th step, and the process
is computed by yt =

−→
ht⊕

←−
ht .

As shown in Figure 2, there are three input embed-
dings in the Bidirectional LSTM Layer (i.e., Er, Ew, and
Epy), which will be fed to three different BiLSTM net-
work (i.e., BiLSTMr, BiLSTMw, and BiLSTMpy which
share parameters). Then we can get three related outputs
from these BiLSTM networks, i.e., Y r={yr1, yr2, . . . , yrlr},
Y w={yw1 , yw2 , . . . , ywlr} and Y py={ypy1 , ypy2 , . . . , ypylr }, which
will be taken into calculation in Section III-C.

C. Attention Layer

BiLSTMs provide three outputs of Y r, Y w, and Y py in
the last section. For a specific output Y r, different element
yri ∈ Y r (where 1 ≤ i ≤ lr) has different effect on Chinese
character-level semantics. In this section, we design an atten-
tion mechanism to calculate the weight of different element
yri in Y r at the j-th BiLSTM c cell. The AttentionLayer
in Figure 2 shows that each time of character-level BiLSTM
network has one attention input, i.e., attαi ∈ attα= {attα1 , attα2 ,
. . . , attαlc}, att

β
i ∈ attβ= {attβ1 , attβ2 , . . . , attβlc}, and attγi ∈

attγ= {attγ1 , attγ2 , . . . , attγlc}.
For ease of exposition, we take attα as the main example

in the next phase of inference. The sequence network to deal
with character-level embeddings Ec is donated as BiLSTM c.
In each time BiLSTM c receives a vector of embedding of
ycj ∈ Y c= {yc1, yc2, . . . , yclc}, where ycj=

−→
hcj ⊕

←−
hcj .

In order to get weight of element yri in Y r at j-th time
of BiLSTM c, we utilize dot function to figure out relevance
between yri and ycj+1. We denote the relevance between yri
and ycj as rei,j , and the process of calculation is as follows:

rei,j = yri
T ycj

re:,j = {re1,j , re2,j , . . . , relr,j}
(3)



Then we employ Softmax to normalize re:,j to get the
attention distribution α={α1,j , α2,j , . . . , αlr,j}, where αi,j
is calculated as Equation 4.

αi,j =
exp (rei,j)∑lr
k=1 exp (rek,j)

, where

lr∑
i=1

αi = 1 (4)

As a result, all weights of {yr1 , yr1 , . . . , yrlr} have been fig-
ured out. Here we use weighted arithmetic to value the whole
effect of radical-level output Y r on character-level embedding.
The calculation of weighted value and concatenation are as
follows:

attαj =

lr∑
i=1

αi,j × yri

écj+1 = Linear(attαj ⊕ ecj+1)

(5)

where attαj is the weighted effect of radical-level embedding
in j-th output of BiLSTM c cell.

After the attention operation, the corresponding attention of
radical-level embeddings to each origin input ecj is available,
i.e., attα= {attα1 , attα2 , . . . , attαlc}. Instead of input ecj+1, we
feed the new input écj+1 into the neural network, where écj+1

∈ Éc= {éc1, éc2, . . . , éclc}. After decades of epochs of training
BiLSTM c network with input Éc, it outputs a contextual
sequence Y c+r= {yc+r1 , yc+r2 , . . . , yc+rlc }.

Similar to the attention operation of radical-level embedding
on characters, Moto figures out that the output of fusion
information of Wubi and Pinyin on characters respectively,
i.e., Y c+w= {yc+w1 , yc+r2 , . . . , yc+wlc } and Y c+py= {yc+py1 ,
yc+py2 , . . . , yc+pylc }.
D. Prediction Layer

Last but not least, we employ the last items of Y c+py ,
Y c+py and Y c+py ( i.e., yc+pylc , yc+pylc and yc+pylc ) as the final
output, then we conduct a concatenation operation on them and
get a comprehensive representation Con ∈ R3D (i.e., Con=
yc+r+w+py
lc = yc+rlc ⊕ yc+wlc ⊕ yc+pylc ). After that, we feed

Con into a fully-connected neural network to obtain an output
vector Lo ∈ RK (Lo= {Lo1, Lo2, . . . , LoK}, and K is the
number of classes in classification task), the whole calculation
is shown as follows:

Lo = σ(Con×W ) (6)

where W ∈ R3D×K is the weight matrix for dimension trans-
formation, and σ(·) is an activation function named sigmoid.

Finally, we utilize a Softmax layer to map each element in
Lo to a conditional probability. The calculation of probability
distribution and class index corresponding to the max one are
shown as follows:

pLoi =
exp (Loi)∑K
k=1 exp (Loi)

P = arg max(PLo)

(7)

where
∑K
i=1 p

Loi= 1 and PLo= {pLo1 , pLo1 , . . . , pLoK}.

E. Model Training
Since what we are trying to solve is a multi-class classifi-

cation task, we apply the cross-entropy [2], [13] loss function
to train our model Moto, and the goal is to minimize the
following Loss:

Loss = −
∑

C∈Corpus

K∑
i=1

pi(C) log pi(C) (8)

where C is the input character-level input text. Corpus denotes
the training corpus and K is the number of classes. In the
period of training, we utilize Adam [14] as optimizer to
update the parameters of Moto. In addition, all BiLSTMs share
properties, including weights and biases.

IV. EXPERIMENTS

A. Datasets

To make a objectively comparison with baseline models,
we conduct experiments separately on four datasets with
gold standard classification labels. These four datasets include
Chinese news titles (#1 and #2) 5, Fudan corpus 6 , and
THUCNews 7.

Dataset#1 The dataset of Chinese news titles contains
47,952 titles with 32 classes (i.e., the topics of news) for
training and 15,986 titles for testing. In order to preserve the
justice of the comporison with [2] and [13], we do not filter
out any texts.

Dataset#2 To test the difference among these four aspects,
we need to keep the purity of the dataset. To do so, we filter the
original dataset#1 by removing the texts whose non-Chinese
ratio is larger that 20%, which refers to the approach proposed
in [2]. The processed texts is remarked as dataset#2.

Dataset#3 The dataset of Fudan corpus is a public dataset
for Chinese text classification task. In this paper, we take
13,649 for training, and the remaining 4,549 for testing.

Dataset#4 The dataset of THUCNews contains 836,036
titles with 14 classes, 627,027 of which for training and the
other 209,009 for testing.

B. Experimental Setup

Initial Setting. We use Open Chinese dictionary, Wubi
library, and Pypinyin Library to transform the character texts
to radical, Wubi, and Pinyin texts, respectively, as discussed
in Section III-A. Moreover, we take the former average length
lavg tokens into computing. And if the length of a sentence is
smaller than lvag, we will use character ‘一’ to make up the
sentence until the length of it equals lvag.

Embedding Setting. Since the performance of deep learn-
ing models is highly related to the quality of input embed-
dings, we utilize the public word2vec tool (Gensim) to train
embeddings for characters, radicals, Wubi codes, and Pinyin
codes based on the large corpora 8. The dimension of those
embeddings are all set to 256 (i.e., D= 256). In addition, since
the average length of texts in Fudan corpus and THUCNews

5https://pan.baidu.com/s/1mgBTFOO
6https://github.com/yzwww2019/Fudan-corpus
7http://thuctc.thunlp.org/message
8https://spaces.ac.cn/archives/4304



TABLE I: Experimental results of different methods on Chinese news titles, Fudan Corpus, Douban movie review, and THUCNews.

Methods
Chinese news titles

dataset #1
Chinese news titles

dataset #2 Fudan Corpus THUCNews

F1(P,R) F1(P,R) F1(P,R) F1(P,R)
SVM+BOW(C)
SVM+BOW(R)
SVM+BOW(W)
SVM+BOW(Py)

0.7421 (0.7440, 0.7420)
0.4697 (0.4652, 0.4809)
0.6021 (0.6041, 0.6002)
0.7290 (0.7309, 0.7271)

0.7252 (0.7268, 0.7255)
0.4691 (0.4636, 0.4813)
0.4852 (0.4783, 0.4923)
0.6702 (0.6874, 0.6539)

0.8434 (0.8373, 0.8495)
0.8187 (0.8216, 0.8158)
0.8303 (0.8229, 0.8378)
0.8359 (0.8367, 0.8352)

0.8713 (0.8811, 0.8618)
0.8641 (0.8637, 0.8646)
0.8638 (0.8597, 0.8679)
0.8703 (0.8778, 0.8629)

Four LSTMs (C + R + W + Py)
Four BiLSTMs (C + R + W + Py)

RAFG
cw2vec(stroke-level)

0.8072 (0.8078, 0.8074)
0.8098 (0.8103, 0.8103)
0.8181 (0.8181, 0.8187)

– (–, –)

0.7904 (0.7912, 0.7910)
0.7915 (0.7925, 0.7921)
0.7999 (0.7993, 0.8010)

– (–, –)

0.8826 (0.8841, 0.8811)
0.8899 (0.8990, 0.8809)
0.9172 (0.9201, 0.9144)
0.9520 (0.9528, 0.9511)

0.9018 (0.9022, 0.9014)
0.9122 (0.9191, 0.9054)
0.9002 (0.9033, 0.8972)
0.9329 (0.9433, 0.9227)

C-LSTMs (C)
C-LSTMs (C + R + W + Py)

C-BiLSTMs (C)
C-BiLSTMs (C + R + W + Py)

0.8108 (0.8102, 0.8114)
0.8163 (0.8177, 0.8149)
0.8140 (0.8153, 0.8127)
0.8211 (0.8246, 0.8177)

0.7931 (0.7944, 0.7929)
0.7956 (0.7951, 0.7972)
0.7757 (0.7754, 0.7922)
0.7939 (0.7957, 0.7922)

0.8801 (0.8828, 0.8774)
0.8823 (0.8775, 0.8871)
0.9213 (0.9309, 0.9118)
0.9264 (0.9384, 0.9147)

0.9033 (0.9054, 0.9012)
0.9036 (0.9068, 0.9004)
0.9236 (0.9290, 0.9183)
0.9294 (0.9332, 0.9257)

Moto(BiLSTM) 0.8316 (0.8346, 0.8287) 0.8168 (0.8192, 0.8144) 0.9638 (0.9671, 0.9605) 0.9633 (0.9679, 0.9588)
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Fig. 3: Details of the validations on the dataset of Fudan corpus, in which there are 20 classes, and xlabel refers to the number of epochs.

is too longer for LSTMs to deal with, we take 1D-CNN [15]
to convolute the texts in token dimension, (i.e., the dimension
of embedding is still kept at 256, but the token number is
convoluted to ). For example, the original embedding matrix
shape 32 × 4058 × 256 will be transformed to 32 × 18 × 256
as the input matrix shape. Finally, we conduct our experiment
on 2 pieces of P100 GPU.

Training Setting. According to the previous training expe-
rience, we set the the dimension of hidden vectors in BiLSTM
to 256, and set dropout rate to 50% to escape overfitting.
Moreover, the learning rate is set to 0.001 and we take Adam
[14] as optimizer for gradient descent computing. Furthermore,
we set batch size to 32 empirically, and employ Precision (P),
Recall (R), and F1-value to evaluate the performance [16],
[17], which is computed as follows:

F1 =
2× (Precision×Recall)
Precision+Recall

(9)

C. Baseline Methods

We compare our model with following baseline models in
Chinese short text classification.

• SVM+BOW. To evaluate the performance of radicals,
Wubi codes, and Pinyin codes, we utilize tf-idf weights of
characters (C), radicals (R), Wubi codes (W), and Pinyin
codes (Py) as features separately, and train SVM classifier
with liblinear 9.

• Four LSTMs/BiLSTMs. We employ four LSTMs to pro-
cess C, R, W, and Py as a whole baseline model, whose
four corresponding hidden output would be concatenated
into a vector. Similar to four LSTMs, we utilize four
BiLSTMs as another baseline to test the effectiveness of
bidirectional setting.

• RAFG [2]. RAFG is a four-granularity (i.e., characters,
radicals, character words, and radical words) model based
on attention mechanism.

9https://www.csie.ntu.edu.xn–tw/cjlin/liblinear/-784l



• cw2vec [18]. cw2vec is a method for learning Chinese
word embeddings in stroke-level information based on
n-grams algorithm.

• C-LSTMs / C-BiLSTMs [13]. C-LSTMs employs two in-
dependent LSTMs to capture word and character features,
which would be concatenated together. C-BiLSTMs is the
bidirectional version of C-LSTMs.

D. Experimental Results
Table I demonstrates the F1-value, Precision, and Recall

of these baseline models and our Moto. In the following, we
introduce these results in detail.

We provide the comparison results with SVM+BOW em-
ploying characters, radicals, Wubi codes, and Pinyin codes as
features respectively. Table I shows that SVM + BOW (C)
achieves the best average F1-value 0.7955, 2.5% higher than
SVM + BOW (Py) in four Chinese text classification tasks.
At the same time, Wubi gets average F1-value 0.6954, as well
radical gets 0.6554. The results indicate that all these four
aspects are carriers of semantics in Chinese, and character
plays the most important role in them.
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Fig. 4: Detailed comparison on the dataset of Chinese news titles,
Sub-figures in former two rows describe the dataset#1, and sub-
figures in the later two rows are related to dataset#2.

When comparing four LSTMs (C + R + W + Py), Four
BiLSTMs (C + R + W + Py), RAFG, and cw2vec, we can find
that RAFG which takes attention mechanism achieves the best
performance, whose average F1-value is 0.8589, higher than
Four LSTMs (0.8455)) and Four BiLSTMs (0.8509). More-
over, cw2vec achieves the best performance in Fudan Corpus
and THUCNews. Additionally, for C-LSTMs (C), C-LSTMs
(C + R + W + Py), C-BiLSTMs(C), and C-BiLSTMs(C + R
+ W + P), the results indicate that methods with bidirectional
version achieve better performance. At the same time, four-
granularity model is better than single character-level model.
Figure 4 plots that the comparison in F1-value among C-
BiLSTMs, RAFG, and our model Moto. We can see that Moto
achieves the best performance in the most classes in dataset
#1 and dataset #2.

For Moto, as shown in Figure 2, we also employ four-
granularity facts (i.e, but different from RAFG) based on atten-
tion mechanism. We conduct Moto on four datasets mentioned
above. As a result, we can see that they achieve better score in
F1-value, Precision, and Recall compared with SVM+BOW,
four LSTMs/BiLSTMs, RAFG, and cw2vec on datasets shown
in Table I. In addition, Moto gets 0.9638 of F1-value 1.24%
which is higher than the second method cw2vec in Fudan
Corpus, and the detailed comparison in Fudan Corpus is shown
in Figure 3. Finally, we conduct Moto in different aspact of
these four granularities, and we can order the effectiveness of
them as C > Py > R > W.

V. CONCLUSION

We propose a novel method combining four granularities
(i.e., characters, radicals, Wubi codes, and Pinyin codes)
based on attention mechanism. Through the experiments on
these four aspects, the order of importance in semantic of
Chinese is that Moto (C) > Moto (Py) > Moto (R) > Moto
(W). In addition, the results in group Moto (C+X) (X= R, W,
or Py) demonstrate that characters, radicals, Wubi codes, and
Pinyin codes are unquestionably important semantic features
in Chinese text classification. Our method Moto is 3.02%
higher the second method C-BiLSTM (C + R + W + Py) in
average F1-value in four datasets. Specifically, Moto improve
the F1-scores of four datasets: 1.28%, 2.11%, 1.24%, and
3.26%. In addition, our Moto achieves the SOTA in precision
(1.89% average improvement).
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