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Abstract. International Classification of Diseases (ICD) is a set of classification
codes for medical records. Automated ICD coding, which assigns unique Interna-
tional Classification of Diseases codes with each medical record, is widely used
recently for its efficiency and error-prone avoidance. However, there are challenges
that remain such as heterogeneity, label unbalance, and complex relationships
between ICD codes. In this work, we proposed a novel Bidirectional Hierar-
chy Framework(HieNet) to address the challenges. Specifically, a personalized
PageRank routine is developed to capture the co-relation of codes, a bidirectional
hierarchy passage encoder to capture the codes’ hierarchical representations, and
a progressive predicting method is then proposed to narrow down the semantic
searching space of prediction. We validate our method on two widely used datasets.
Experimental results on two authoritative public datasets demonstrate that our
proposed method boosts the state-of-the-art performance by a large margin.

Keywords: Structural encoder · ICD coding · Bidirectional passage retriever ·
Hierarchical embedding · Healthcare · co-occurrence encoder.

1 Introduction

The International Classification of Diseases (ICD) is widely considered as a healthcare
multi-label classification system, supported by the World Health Organization (WHO).
ICD codes have widely been used for reimbursement, taxonomy of diagnoses and
procedures, and monitoring health issues [3, 20]. ICD coding needs coder to assign
proper codes to a patient visit, which is composed of multiple long and heterogeneous
textual narratives (e.g., discharge diagnosis, procedure notes, event notes), authored
by different healthcare professionals, which means it’s time-assuming, error-prone,
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and expensive in manual way. As a result, automated ICD encoding has attracted much
attention since it can save time and labor for billing. A number of neural network methods
handling automated coding as multi-label task, have been proposed by [5, 19, 33], which
converts the ICD coding into a set of binary classification for each code.

ICD codes can be organized in a tree-like structure. If a node N represents a kind
of disease, the children of N are the sub-types of this disease. And in many cases,
the differences among the siblings from one parent disease are very subtle. There are
several challenges to link the discharge summaries with ICD codes: (1) Each admission
record has a long and complex discharge summary. And the summaries are usually
more than one thousand words long, containing medical history, diagnosis texts, surgical
procedures, etc. Thus, it is difficult to assign proper codes to a given clinical note. (2) The
label space to predict of ICD codes is very large (e.g., over 18,000 for ICD-9-CM) and
the label distribution is extremely unbalanced. However, the average length of training-
label codes in MIMIC-III-full is only 15.89 and the length of codes in 80% clinical notes
is less than 22. Therefore, we only need to ensure the accuracy of top predicted codes.
(3) Mutual exclusivity (ME) in ICD codes: As shown in Figure 1), we use deep and
light orange colors to represent ME codes. Deeper orange color represents ‘parent-child’
codes, and lighter orange color represents sibling codes. For example, given a clinical
text, if a finer code ‘521.00’ is predicted, the parent of it ‘521.0’ and grandparent ‘521’
should not occur in the predicted results. Furthermore, some sibling ICD codes should
not appear in the same predicted result, such as ‘464.00’ (Acute laryngitis without
mention of obstruction) and ‘464.01’ (Acute laryngitis with obstruction), because they
are anti-sense. (4) Co-occurrence (CC) in ICD codes: We leverage light green and deep
green colors for CC codes. Light green color represents reasoning co-occurrence codes.
For example, ‘997.91’ (hypertension) usually leads to the occurrence of ‘429.9’ (heart
disease, unspecified); Deep green color represents CC codes caused by common pre-
conditions. For example, ‘staying up too late’ usually causes ‘997.91’ (hypertension)
and ‘784.0’ (headache).

Some methods based on CNN ( [17,19,33]) were proposed to address the issues from
the characteristic (1) above, and they were proved efficient in extracting features from
long texts. For characteristic (2), to our knowledge, no previous scheme was proposed to
solve it. To address problem with characteristic (3), [32] leverage a sequential tree-lstm
architecture to extract structural features of code tree. However, as we know, there is
no contextual relationships among siblings in the code tree and it’s hard for tree-lstm
process long sequential issue. Another approach [5] leverages hyperbolic ball to encode
the ME feature, but it’s hard to measure the real performance of this non-euclidean
method on ME problem. To address problem with characteristic (4), previous methods
(e.g., [5]) employ GCN [14] to encode co-occurrence features of codes. However, GCN
is unsuitable for describing the root node’s neighborhood and not designed the causal
co-occurrence cases. In summary, issues from characteristics (2), (3), (4) remain to be
solved.

In this paper, to address issues above, we present a novel method HieNet, which
is short for Bidirectional Hierarchy Framework for Automated ICD Coding. HieNet
contains three main modules, including a progressive mechanism (PM module), a
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Fig. 1: A schematic diagram of the ICD code tree, matching process between clinical
notes and codes (1), progressive mechanism (2), and relationships among ICD codes
((3) and (4)).

bidirectional hierarchy passage encoder (BHPE module), and a personalized PageRank
(PP module). These modules are designed as the solution of (2), (3), and (4), respectively.

Progressive Prediction for (2): Given a clinical text or diagnose description, the
previous methods predict all its ICD codes at the same time. However, some codes
achieving high scores in their binary predictions can help predict other codes. For
example, the neighbors of predicted code ‘401.9’ (unspecified essential hypertension) in
code tree usually contains some other potential gold labels, such as ‘348.4’ (compression
of brain). To make full use of first predicted, we introduce an approach named progressive
mechanism to reduce the difficulty of improving the accuracy of predicted codes (e.g.,
average 14.3% improvement on Jaccard metric over the average scores of the best
baselines).

Hierarchy Features Encoding for (3): There are two patterns in mutual exclusiv-
ity (ME): parent-child and sibling relationships. As stated above, ICD codes with ME
relationships should not occur in one clinical note. To address the issue, we propose a
bidirectional hierarchy passage encoder (BHPE) that contains two sub-modules: bidirec-
tional passage retriever (BPR) and tree position encoder (TPE). The experimental results
indicate that the BHPE module improves HieNet by 12.0% on macro-F1 on MIMIC-III
full.

Code Co-occurrence Encoding for (4): Some codes have causal or pre-condition
co-occurrence relationship, which is called code co-occurrence (CC). Pre-condition
CC codes are usually caused by common bad habits or hurts. We propose personalized
PageRank (PP) to encode pre-condition CC features. Furthermore, the combination of
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PM and PP enable PP has the ability to encode causal CC relationships among ICD
codes. The experimental results show that PP module makes the 10.7% improvement on
macro-F1 on MIMIC-III full and 13.1% improvement on macro-F1 on MIMIC-II.

Our contributions: 1) To the best of our knowledge, we are first to propose the
progressive mechanism to improve the accuracy of topK predicted ICD codes. 2) We
are first to introduce the bidirectional passage retriever and tree position encoder as the
solutions of two patterns (i.e., parent-child, sibling) of mutual exclusivity. 3) We intro-
duce a personalized PageRank to encode the pre-condition CC and leverage progressive
mechanism to capture casual CC features. 4) The experimental results on two widely
used datasets illustrate that HieNet outperforms the state-of-the-art compared to the
previous methods (e.g., 20.6% improvement on top30-Jaccard (MIMIC-III 50) over the
best baseline CAML).

2 Related Work

Automatic ICD coding: Automatic ICD coding has been studied in a large coverage of
areas, including information retrieval, machine learning, and healthcare. [12] treat the
ICD coding as a multi-label text classification problem and introduced a label ranking
approach based on the features extracted from the clinical notes. [19] proposed the
landmark work CAML with attention algorithm and leveraged CNN to capture the key
information for each code, and DR-CAML is a updated version of CAML with code
description proposed in the same publication. Inspired by CAML, more CNN-based
methods are proposed, including [2,26,36]. [28] explored character based on LSTM with
attention and [32] applied tree LSTM with hierarchy information for ICD coding. [35]
applied multi-modal machine learning to predict ICD codes. [31] transferred the ICD
coding into a path generation task and developed an adversarial reinforcement path
generation framework for ICD coding.

Hierarchical Encoder: Tree position encoder was proposed by [7] and applied in
tree-based transformers. Recent works demonstrate that tree position encoder can handle
source code summarization [1] and semantic prediction [8]. To our knowledge, we are
the first to take the tree position encoder to capture the position embedding of code tree.

Co-occurrence Encoder: PageRank was proposed by [23] and widely employed
in website page ranking [16], latent topics mining [22], key phrase extraction [7], and
mutillingual word sense disambiguation [27]. [15] proposed personalized PageRank
(PPNP) to address the limit distribution of GCN. We are the first to use the personalized
PageRank to encode the code co-occurrence representations for the automated ICD
coding task.

3 Proposed Model

3.1 Problem Definition

Following the previous works [5, 32], We formulate ICD coding as a multi-label text
prediction problem. We make some definitions here to help state the proposed work well.



HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding 5

– Definition 1: CC CC is short for Code co-occurrence and it contains three cases: (1)
pre-condiction CC. Intuitively, some diseases are usually caused by common bad
habits; (2) causal CC. (3) other co-occurrence codes without obvious reasons.

– Definition 2: ME ME is short for Mutual exclusivity and it contains two cases:
(1) Parent-child pairs. (2) Complementary sibling pairs, such as ‘464.00’ (without
mention of obstruction) and ‘464.01’ (with obstruction).

– Definition 3: DP DP represents improving the accuracy of topK predicted codes.
Actually, 80% clinical notes have less than 22 codes, so we need to focus on
improving the accuracy of topK predicted codes.

3.2 Model Architecture

Figure 2 shows an overview of the bidirectional hierarchy passage framework. Firstly, we
encode the code hierarchy semantic as hierarchical code representations via bidirectional
hierarchy passage retriever. Furthermore, we employ a multi-channel CNN to obtain
clinical document embeddings and conduct a code-wise operation between document
embeddings and hierarchical code representations. Secondly, we introduce a progressive
mechanism to improve the accuracy of topK predicted ICD codes (DP). Thirdly, we
leverage a personalized PageRank algorithm to calculate the co-occurrence relationships
among ICD codes. Finally, we aggregate the results of above modules and conduct a full
connected layer with multiple sigmoid functions to generate 0-1 probability distributions
for each code.
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Fig. 2: The architecture of our model.

3.3 Document Feature Extractor (DFE)

Given a electronic health record W={w1,w2, ...,wN } (N donates the length of W),
we map W into a vector representation X∈ Rde×N where de indicates the dimension
of word embedding. We leverage a multi-channel one-dimensional convolution neural
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network to encode clinical texts. A convolution operation contains a filter Wf with a
window of k words. For example, a feature fi is generated with a window of words
xi:i+k−1 by

fi = relu(Wf ∗ xn:n+k−1 + bc) (1)

where relu(·) is a non-linear transformation function, b ∈ Rde is a bias, * is the concatenation
operator. This filter is applied with multiple filter size to produce a final feature map f :

f = f1,2,...,n−l+1 = f1 ⊕ f2 ⊕ · · · ⊕ fn−l+1. (2)

Then we employ a pooling operation over feature map f and take the maximum value as the
final value of f by f̂ = max(f). Regarding l channels (l different window sizes), we concatenate
generated l feature maps as a representation H of an clinical text as follows:

H = f̂1 ⊕ f̂2 ⊕ · · · ⊕ ˆfn−l+1. (3)

3.4 Bidirectional Hierarchy Passage Encoder (BHPE)

This section will introduce the hierarchy encoder that includes two main modules: bidirectional
passage retriever (BPR) and tree position encoder (TPE). First, we construct a dimensional
vector by averaging the vectors of words of code’s description to represent the code. Then, we
propose BPR to capture parent-child relationships. Moreover, we introduce TPE to encode tree
positions of codes. Next, we add representations from BPR and TPE as the final vectors of codes
that contain both hierarchical and parent-child contextual features. Finally, we obtain code-wise
document representations by conducting code-wise attention between codes vectors and document
representations.

Bidirectional Passage Retriever (BPR) BPR uses two independent BERT encoders to
capture the hierarchical relationships among ICD codes, including two directional process: up-
stream u (child → parent) and down-stream d (parent → child):

eu = BERTu(u), ed = BERTd(d), (4)

where eu ∈ Rd and ed ∈ Rd. We use the uncased version of BERT-base; therefore, d = 768. The
initial embedding tool of BERT we employ is WordPiece tokenization (wp) which is different
from the initial method of ICD codes (word2vec) .

In the up-stream passage retriever, an internal node (with M children) is comprised of these
components: a position cell p for each node, a self-input cell i↑, and a BERT cell {b↑}Mm=1

for M children. The position cell is used to encode the related relationship of ICD codes in the
hierarchical code tree and the computation of p is shown in section 3.4. The transition equations
of among components are:

u = Set(pk + wp(wk))
M
m=1,

i↑ = {b↑}Mm=1 = BERTu(u),
(5)

Why initial methods of ICD codes and clinical codes are diffident? Answer: ICD codes are usually
beyond the vocabulary of BERT because they are professional and technical terms while words
in clinical are original that can be covered by the vocabulary of BERT. Therefore, for better
representing ICD codes and clinical notes, we leverage word2vec tool and WordPiece tokenization
function in BERT to init them, respectively.
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where wk is the k-th token of M children of node C.
In the down-stream passage retriever, for a not-root node, it has such one component: an input

cell i↓. The transition equation is:

i↓ = BERTd(p+ wp(w)) (6)

where p is the position embedding of the parent node and w is the average embedding of the node’s
description. Since root node has no parent, i↓ cannot be computed using the above equations.
Instead, we set i↑ to i↓ here.

Loss function of BPR: We call a pair of one up-stream PR and one down-stream PR an
interaction. In one interaction, one node nj has two representations: n

i↑
j and n

i↓
j . The goal of

training BPR is to reduce the difference between n
i↑
j and n

i↓
j as much as possible. Both n

i↑
j (X

= {0, 1, 2,..., k,...,de}) and n
i↓
j (X) can be recognized as two distributions. So we construct a

Kullback-Leibler divergence [25] as the loss function of BPR:

Lbpr1 =
1

L
ΣL

1 Σ
de
1 [n

i↑
j (x)log(n

i↑
j (x))− n

i↑
j (x)log(n

i↓
j (x))]

Lbpr2 =
1

L
ΣL

1 Σ
de
1 [n

i↓
j (x)log(n

i↓
j (x))− n

i↓
j (x)log(n

i↑
j (x))]

Lbpr = Lbpr1 + Lbpr2 + ∥Lbpr1 − Lbpr2∥22

(7)

where L is the number of all ICD codes, de represents the dimension of ICD codes, nj is the
j-th node of ICD codes, x represents x-th item of nj , Lbpr1 represents child-to-parent KL value
between n

i↑
j and n

i↓
j , Lbpr2 represents parent-to-child KL value between n

i↑
j and n

i↓
j .

When the loss value is miner than 0.01, the training stops. Finally, we obtain parent-child code
representations Vt ∈ Rde×N .

Tree Position Encoder (TPE) Inspired by [29], we propose a tree position encoder to capture
the positional features of ICD codes.

PEβ = AϕPEα (8)
Given a position α, we can get the target position β with affine transform operation Aϕ

(Eq.(8)). The path between α and β can be considered as the set of n length-1 paths. Directions
of these paths contains “to parent” and “to children”. We take “to parent” as function U and “to
children” function D. Thus, for any path ϕ, we can obtain the transform Aϕ by some combinations
of U and D. For example, the position encoding of the second child of node x’s grandpa can
described path ϕ = ⟨parent, parent, child-2⟩, which can also be represented as D2U

2PEx.
We take the root node as zero vector (0 ∈ Rde ). Then, since all the paths from the root to other

positions are downward, we can get embedding of any position x via the Eq.(9).

x = DbLDbL−1 ...Db1 (9)

where L here means the L-th layer the node is located, and bi represents the chosen path in the i-th
layer. We treat tree position encoding as a stack of length-1 component parts. Every D operation
pushes a length-1 path onto the stack, while U pops a length-1 path, which is described as Eq.(10):

Dix = eni ⊕ (x⊖ x[n+ 1 :])

Ux = (x⊖ x[: (n− 1)])⊕ 0n

(10)

where ⊖ means pop operation or truncation, and ⊕ indicates push or concatenate operation. In
addition, eni is an one-hot encoding with n elements and n is the total number of children of a
parent. An example of function D is shown in 3.4.
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Fig. 3: An example of function D

After tree-position encoding, we obtain
code tree-position embedding (V p ∈ Rde∗N ).
Then add Vp to Vt to get final code represen-
tation Vpt that contains both parent-child rela-
tionships and hierarchical features.

Code-Wise Attention Inspired by [5], we
use code-wise attention to generate code-aware
document representations by using represen-
tations outputted from document feature ex-
tractor and bidirectional hierarchy passage en-
coder. The code-wise attention feature al for
code l is calculated by:

sl = Softmax(tanh(H ·WT
a + ba) · vptl)

al = sTl ·H
(11)

where Softmax is the normalized exponential function, sl donates the attention scores for all
elements in document representation H, al represents the most relevant information in H about
the code l by code-wise attention. Then we get de × L dimensional code-wise adjacent document
representations.

3.5 Progressive Mechanism (PM) for DP

This section introduces a simple progressive mechanism to address the DP problem in ICD coding.
A former predicted code could help to predict next codes. For example, the neighbours of ‘Diabetes
mellitus’ contain ‘heart disease’, neighbours of ‘heart disease contain ‘cardiovascular disease’,
then there exists a prediction path ¡Diabetes mellitus, heart disease, cardiovascular disease¿. Given
a clinical note, if ‘Diabetes mellitus’ is true, then we could use this label to predict ‘heart disease’.
Similarly, we can use ‘heart disease’ to predict ‘cardiovascular disease’. But if ‘heart disease’ is
wrong, the process of progressive prediction will end. The problem is how to use the prior predicted
code to predict other codes. We address the problem above by constructing an average-operation
between the prior code’s hidden output and other codes’ hidden outputs with a hyper-parameter λ.
Assuming the hidden outputs are described as fi ∈ R1×1 and it is proved true, then later hidden
output fj should be calculated as follows:

fj = λfi + (1− λ) ∗ fj (12)

where λ is a trade-off factor to balance fj and fi. Here, fi decides the influence from a former
code to a later code. fj reflects the current value of node j itself.

Figure 3.6 shows the dynamic progressive prediction in detail. After PM, we obtain the output
hidden embedding of ICD coding methods P = {p1, p2,..., pL} ∈ Rde∗L.

3.6 Personalized PageRank (PP) for CC

Inspired by PPNP [15], we build a personalized PageRank [23] to capture the code co-occurrence.
Given a clinical text and its golden labels, we can build a strong connected sub-graph, and connect
all sub-graphs into a big graph G = (V, E), where V and E are sets of nodes (codes) and edges
respectively. Let L denote the number of nodes and m the number of edges. The graph G is
described by the matrix A ∈ RL∗L, and Ã = A + In denotes the matrix A with added self-loops.
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Fig. 4: Overview of progressive mechanism,
Net represents the network of method for au-
tomated ICD coding, BCE is binary cross-
entropy, GD is short for Ground Truth.

In the graph G, let the initial represen-
tation of node x as ix. In addition, We can
update node embedding by the recursion
equation:

PPR(ix) = (1− d)
ˆ̃
A+ dix

= d(In − (1− d)
ˆ̃
A)−1ix

(13)

where ˆ̃
A = D̃− 1

2 Ã D̃− 1
2 . D is a degree

matrix of nodes and D̃ denotes the degree
matrix of graph with added self-loops,
where D̃i,i = ΣjÃi,j

We generate predictions based on each
node’s own characteristics, and then prop-
agate them through a fully personalized
PageRank scheme to generate the pagerank-
aware prediction. The pagerank-aware em-
bedding is denoted as PPR = {ppr1, ppr2,...,
pprL} ∈ Rde∗L.

3.7 Aggregation and Training

Aggregation: After exploiting the structural information of code via BHPE (i.e., BPR and TPE)
and code co-occurrence via personalized PageRank, we obtain a normal representation (P) (from
PM in Sec 3.5) and a pagerank-aware representation (PPR) (Sec 3.6), respectively. We concatenate
P and PPR as P3R ∈ Rde∗2L and conduct a fully connected layer to reshape the matrix in to
Rde∗L embedding space.

Training: Since the automated icd coding is a multi-label prediction task, we employ a multi-label
binary cross-entropy (BCE) as the loss of our model:

LBCE(y, ŷ) = −ΣL
l=1[yl log(ŷl) + (1− yl) log(1− ŷl)] (14)

where yl is the ground truth and ŷl is the predicted value, ŷl = σ(xl). Here, we use Adam
optimizer [13] to propagate the parameters of our model.

4 Experimental Setup

4.1 Datasets

MIMIC-II [11] and MIMIC-III [10] are the most widely open-access datasets for evaluating
automated ICD encoding methods. In MIMIC-III, there exists two versions. One is MIMIC-III full
and the other is MIMIC-III 50. For MIMIC-III full, there are 8,921 unique codes, 47,723 discharge
summaries for training, 3,372 summaries for test, and 1,631 for validation. For MIMIC-III 50,
we use a set of 8,066 for training, with 1,729 summaries and 1,729 summaries for validation
and test, respectively. In MIMIC-II dataset, there are 5,031 clinical codes, and we use the same
experimental setting as previous works [4, 5, 24].
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4.2 Metrics and Parameter Settings

We use macro/micro-averaged F1, macro/micro-averaged AUC, and P@N as the main metrics to
evaluate our model and baselines. To measure DP, we use Jaccard Similarity Coefficient [21] as
the metric, which is defined as Jaccard = 1

m
Σm

i |Yi ∩ Ŷi|/|Yi ∪ Ŷi|, where m is the number of
instances of the dataset, Yi is the predicted results from different ICD coding methods, Ŷi indicates
the ground truth ICD set (note: Assuming that len(Y) = ly , len(Ŷ = K, len(Y∩Ŷ ) = l∩, if K ≥ ly ,
let Ŷ = Ŷ [: m], else let Y = (Y ∩Ŷ ) ∪ 0*(K-l∩).

We set the word embedding size de as 100. The size of hidden layer is 128. We set 5 channels
in CNN and the filer-sizes of them are 1, 3, 5, 7, 10, respectively. The dropout rate is 0.2. The
learning rate is 1e−4. The batch size is set as 32. The dump rate d in Eq.(13) is 5. The maximize
of personalized PageRank loop is 50. The criterion for early stopping is 10. The initial embedding
tool for clinical codes is word2vec [18]. The initial embedding tool for clinical text is WordPiece
tokenizer in BERT. The reason of why we use different initial embedding methods for clinical
codes and nodes are shown in footnote 1 in Sec3.3.

4.3 Baselines

In order to demonstrate the effectiveness of HieNet, we compare it with several previous methods,
including state-of-the-art models with knowledge graph and GCN.

• CNN. CNN is a widely applied method in language modeling [6].
• CAML & DRCAML [19]. CAML leverages convolutional attention for automated ICD

prediction. DR-CAML is a updated version of CAML with code description.
• HyperCore [5]. This method employed hyperbolic representation to capture the code hierar-

chy and used GCN [14] to encode the semantic of the code co-occurrence.
• JointLATT [30]. This method proposed a new label attention method. And the label attention

model achieve SOTA results compared with other previous works.
• MASTATT-KG [34]. This method utilizes a multi-scale feature attention to select multi-scale

features adaptively.
• MultiResCNN [17]. MultiResCNN contains a multi-filter convolutional layer to capture

various text patterns and a residual convolutional layer to enlarge the receptive field.
• DCAN [9]. This method proposes a dilated convolutional attention network, integrating

dilated convolutions, residual connections, and label attention, for medical code assignment.

5 Result and Analysis

We focus on answering the following researching questions (RQs):

• RQ1: What is the performance of HieNet on ICD encoding task?
• RQ2: Why progressive mechanism and how it performs?
• RQ3: What are the contributions of the different components?
• RQ4: How does the trade-off coefficient (λ in Sec 3.5) influence the performance?

5.1 Overall Performance (RQ1)

The comparisons between our model and other state-of-the-art on MIMIC-II and MIMIC-III are
given in Table 1 and Table 2, respectively. Our HieNet model outperforms every single baseline on
most of metrics. The CAML architecture is comparable to the DR-CAML, and the CNN baseline
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Table 1: Results (%) of the comparison of our model and other baselines on the MIMIC-
III full and MIMIC-III 50. In all tables, the bold number with * indicates the best result
compared to other methods.

MIMIC-III full

Model
Jaccard AUC F1 P@N

top 20 top 30 Macro Micro Macro Micro 8 15
CNN 30.2 20.9 80.6 96.9 4.2 41.9 40.2 49.1
CAML 32.4 22.5 88.8 98.4 7.1 51.9 69.7 54.9
DR-CAML 33.7 23.1 89.7 98.5 8.6 52.9 69.0 54.8
HyperCore - - 93.0 98.9 9.0 55.1 72.2 57.9
JointLAAT - - 92.1 98.8 8.9 55.3 73.5 59.0
MSATT-KG 32.1 22.0 91.0 99.2 9.0 55.3 72.8 58.1
MultiResCNN - - 91.0 98.6 8.5 55.2 73.4 58.4
HieNet 36.3* ± 0.2 27.5* ± 0.3 93.3* ± 0.4 99.2* ± 0.2 9.3* ± 0.1 56.6* ± 0.7 78.3* ± 0.5 65.0* 0.3

MIMIC-III 50

Model
Jaccard AUC F1 P@N

top 20 top 30 Macro Micro Macro Micro 5 -
CNN 31.7 24.3 87.6 90.7 57.6 62.5 62.0 -
CAML 32.5 25.2 87.5 90.9 53.2 61.4 60.9 -
DR-CAML 32.5 24.6 88.4 91.6 57.6 63.3 61.8 -
HyperCore - - 89.5 92.9 60.9 66.3 63.2 -
JointLAAT - - 92.5 94.6 66.1 71.6 67.1 -
MSATT-KG 33.9 24.7 91.4 93.6 63.8 68.4 64.4 -
MultiResCNN - - 89.9 92.8 60.6 67.0 64.1 -
DCAN - - 90.2 93.1 61.5 67.1 64.2 -
HieNet 37.7* ± 0.1 30.4* ± 0.2 93.4* ± 0.8 95.0* ± 0.1 67.1* ± 0.2 72.4* ± 0.2 69.5* ± 0.3 -

essentially performs the worst than all other neural architectures. We recognized P@N as the most
intuitive measure to indicate the effectiveness of methods, since it examines the ability of the
method to return a high-confidence subset of codes. Moreover, Jaccard is used to measure the
accuracy of topK predicted codes.

For MIMIC-III full: Compared with baselines, HieNet achieves the best perfermance on
macro-F1, micro-F1, and macro-AUC. Since clinical codes are in uneven distribution and macro-
F1 emphasizes the performance of rare label, it is difficult to obtain high macro-F1 score. Even
in this case, HieNet performs perfectly and achieves 3% improvement compared to the latest
state-of-the-art HyperCore method. This demonstrates the effectiveness of HieNet. Furthermore,
on Jaccard metric, HieNet improves the performance by a big margin with 7.7% improvement on
top20 (from 33.7% to 36.3%) and 19.0% improvement on top30 (from 23.1% to 27.5%).

For MIMIC-III 50: Following the previous work [5, 19], we also evaluate our model and
baselines on the most common 50 codes set of MIMIC-III. Different from MIMIC-III full, MIMIC-
III 50 has a relatively smooth distribution, which leads to the possibility of achieving higher
macro-F1 scores.

Our method obtains the highest score on macro-AUC, micro-AUC, and P@5 metrics. On
MIMIC-III 50, HieNet achieves the best performance on most of the evaluation except micro-F1
and macro-F1. The top30-Jaccard value gets the most significant improvement (i.e., 20.6% over
the best baseline CAML). The reason is that codes on datasets on MIMIC-III 50 are more closely
related, and progressive mechanism (CC) is just designed for this.

For MIMIC-II: As shown in Table 2, MIMIC-II contains 5,031 labels, and our method
HieNet also performs the best on most metrics compared with baselines except macro-F1 value. In
addition, latest work HyperCore’s macro-AUC, micro-AUC, micro-F1, and P@8 are much lower
than HieNet (1.0%, 1.2%, 3.1%, and 5.4% lower). top20 and top30 Jaccard values indicate that
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Table 2: Experimental results of our model and other baselines on MIMIC-II.
Model Jaccard AUC F1 P@N

top20 top30 Macro Micro Macro Micro 8
CNN 13.7 11.3 74.2 94.1 3.0 33.2 38.8
CAML 14.4 12.3 82.0 96.6 4.8 44.2 52.3
DR-CAML 13.8 11.7 82.6 96.6 4.9 45.7 51.1
HyperCore - - 88.5 97.1 7.0 47.7 53.7
JointLAAT - - 87.1 97.2 6.8 49.1 55.1
MultiResCNN - - 85.1 96.8 5.2 46.4 54.4
HieNet 15.7* ± 0.1 13.2* ± 0.3 89.4* ± 0.2 98.3* ± 0.1 7.1* ± 0.5 49.2* ± 0.2 56.6* ± 0.3

CNN, CAML, and DR-CAML are poor in leveraging relationships among codes while HieNet can
predicts a higher coverage of correct ICD codes.

5.2 Effectiveness of Progressive Mechanism (RQ2)

We take an example in Figure 5. For a given clinical text (patient 118299 here), we verify the
impact of the first predicted code on predicting the second one, and the effect of the front two
predicted codes on predicting the third one.

The gold label of patient 118299 is gl = [‘198.3’, ‘348.5’, ‘162.9’, ‘401.9’, ‘272.4’, ‘15.9’,
‘22.0’, ‘20.5’], and the front predicted codes are ‘401.9’ and ‘15.9’. The node ‘401.9’ has 1,655
neighbors and Figure 5a just shows the 20 of them. The node ‘15.9’ has 56 neighbors and Figure
5b only shows 20 of them. The shared neighbors (i/t-1&2 in Figure 5c) are i/t-1&2 = [‘041.19’,
‘22.1’, ‘433.31’, ‘209.79’, ‘013.25’, ‘237.6’, ‘239.6’, ‘43.11’, ‘372.30’, ‘33.22’, ‘23.4’, ‘803.62’,
‘20.5’]. As observed, ‘20.5’ occurred in i/t-1&2 is exactly one element in gl. Thus, we only need
13 labels (i/t-1&2) to predict the third code.
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Fig. 5: Example of progressive mechanism in HieNet on patient 118299 summaries.
n/bs means neighbors, i/t represents interaction, pred-1 indicates the top 1 of predicted
codes, nb-i denotes the set of neighbors of i-th predicted codes, and it-1&2 represents
the interacted result of nb-1 and nb-2.

5.3 Ablation Study (RQ3)

We conduct ablation investigation to examine the effectiveness of each part in our model.
To evaluate model M, we remove it and perform the remaining part on the datasets and
denote such a baseline by w/o (without). The comparisons of w/o with the whole model
are shown in Table 3.

Impact of PM. To evaluate the effectiveness of progressive mechanism, we remove
the progressive part from the full model and denote this baseline as w/o progressive
module. As shown in Table 3, HieNet without progressive module achieves lower scores
of macro-F1, micro-F1 on both MIMIC-II and MIMIC-III.

Impact of PP. Compared with the w/o personalized PageRank module, the full
HieNet improves the score on Macro-F1 from 0.084 to 0.093 on MIMIC-III full, 0.586
to 0.611 on MIMIC-III 50, and 0.065 to 0.069 on MIMIC-II, respectively. Meanwhile,
the full HieNet performs better on micro-F1 on the datasets.

As shown in the line ‘w GCN for CC (w/o PP)’ in Table 3, HieNet with GCN for
CC problem gets 9.1, 60.4, 6.7 on Macro-F1 of all datasets. Obviously, the performance
on ICD coding on three main datasets of HieNet with GCN is less than HieNet with PP.

Impact of BHPE. To examine the effectiveness of the tree-position encoder, we
remove the module and compare the remaining part with the full HieNet. The comparison
is given in Table 3, HieNet improves 10.7% (from 0.084 to 0.093) on macro-F1 on
MIMIC-III full, and 4.3% (from 0.586 to 0.611) on macro-F1 on MIMIC-III 50, 6.2%

Fig. 5: Example of progressive mechanism in HieNet on patient 118299 summaries.
n/bs means neighbors, i/t represents interaction, pred-1 indicates the top 1 of predicted
codes, nb-i denotes the set of neighbors of i-th predicted codes, and it-1&2 represents
the interacted result of nb-1 and nb-2.

Table 3: Ablation study by removing the main components.
Models

MIMIC-III full MIMIC-III 50 MIMIC-II
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

HieNet 9.3* 56.6* 61.1* 65.7* 6.9* 49.2*
w/o PM 8.9 56.3 59.8 64.1 6.5 47.7
w/o BHPE 8.3 55.2 57.7 62.6 6.1 47.5
w/o PP 8.4 56.1 58.6 65.3 6.5 47.3
w GCN for CC (w/o PP) 9.1 55.3 60.4 65.7 6.7 49.0
w tree-lstm for DP (w/o BHPE ) 8.8 55.2 60.0 64.6 6.6 47.9

5.3 Ablation Study (RQ3)

We conduct ablation investigation to examine the effectiveness of each part in our model.
To evaluate a model, we remove it (denoted as without, w/o) and perform the remaining
part on the datasets. The experimental results of ablation study are shown in Table 3.

Impact of PM. We remove the PM part from the full model. As shown in Table 3,
HieNet without progressive module achieves lower scores of macro-F1, micro-F1 on
both MIMIC-II and MIMIC-III.

Impact of PP. Compared with the w/o personalized PageRank module, the full
HieNet improves the score on Macro-F1 from 0.084 to 0.093 on MIMIC-III full, 0.586
to 0.611 on MIMIC-III 50, and 0.065 to 0.069 on MIMIC-II, respectively. Meanwhile,
the full HieNet performs better on micro-F1 on the datasets.

Fig. 5: Example of progressive mechanism in HieNet on patient 118299 summaries.
n/bs means neighbors, i/t represents interaction, pred-1 indicates the top 1 of predicted
codes, nb-i denotes the set of neighbors of i-th predicted codes, and it-1&2 represents
the interacted result of nb-1 and nb-2.

Obviously, the neighbors of the former predicted codes can be used help predict the one. In
conclusion, the process of above demonstrates the effectiveness of progressive mechanism.
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5.3 Ablation Study (RQ3)

We conduct ablation investigation to examine the effectiveness of each part in our model. To
evaluate a model, we remove it (denoted as without, w/o) and perform the remaining part on the
datasets. The experimental results of ablation study are shown in Table 3.

Table 3: Ablation study by removing the main components.
Models

MIMIC-III full MIMIC-III 50 MIMIC-II
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

HieNet 9.3* 56.6* 67.1* 72.4* 6.9* 49.2*
w/o PM 8.9 56.3 59.8 64.1 6.5 47.7
w/o BHPE 8.3 55.2 57.7 62.6 6.1 47.5
w/o PP 8.4 56.1 58.6 65.3 6.5 47.3
w GCN for CC (w/o PP) 9.1 55.3 60.4 65.7 6.7 49.0
w tree-lstm for DP (w/o BHPE ) 8.8 55.2 60.0 64.6 6.6 47.9

Impact of PM. We remove the PM part from the full model. As shown in Table 3, HieNet
without progressive module achieves lower scores of macro-F1, micro-F1 on both MIMIC-II and
MIMIC-III.

Impact of PP. Compared with the w/o personalized PageRank module, the full HieNet
improves the score on Macro-F1 (MIMIC-III full) from 0.084 to 0.093, 0.586 to 0.611 (MIMIC-III
50), and 0.065 to 0.069 (MIMIC-II), respectively. As shown in Table 3, the line ‘w GCN for CC
(w/o PP)’ performs poorer than HieNet.

Impact of BHPE. We remove BHPE and compare with the full HieNet. The result is given in
Table 3, HieNet improves 10.7% (from 0.084 to 0.093) on macro-F1 (MIMIC-III full), and 14.5%
(from 0.586 to 0.671) on macro-F1 (MIMIC-III 50), 6.2% (from 0.065 to 0.069) on macro-F1
(MIMIC-II), etc, respectively.

Table 3 shows that HieNet with tree-lstm instead of BHPE performs worse on all metrics on
three main datasets. The results from Table 3 demonstrates the effectiveness of different modules
in HieNet. In addition, BHPE module plays a more important role in HieNet compared with PM
and PP.

5.4 The impact of λ (RQ4)
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Fig. 6: Performance with different values of λ.

The trade-off parame-
ter λ is used to balance the
influence factor from for-
mer hidden outputs and cur-
rent hidden output. When
λ is larger, HieNet relies
more on the former predicted
codes to influence the next
ones to predict, which means
there exists a strong rea-
soning relationship in the
predicted codes correspond-
ing to the given clinical note. When λ is smaller, HieNet tends to prioritize the current hidden
output to predict a proper ICD code during the learning. The value of λ is set from (0, 0.1, 0.2, ...,
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1.0) to measure the performance. The results measured on MMIMIC-III-full are shown in Figure
5.4.

First, as λ increases, all metrics increase gradually at the beginning, but most of them decrease
when λ ≥ 0.3. In addition, F1 of macro-average decreases after λ ≥ 0.4. The best performance
is not achieved when λ = 0 or 1. This demonstrates that progressive mechanism improve the
performance of ICD coding methods. Second, Figure 5.4 shows that the beginning increases
of macro-F1, macro-AUC, micro-F1, and micro-AUC are faster than the afterward decreases.
Specially, micro-AUC grows from 0.65 to 0.98 only by the 0.3 added λ-value while micro-AUC
drops from 0.98 to 0.7 needs another 0.7 added λ-value. This indicates the information of prior
predicted codes can significantly affect the performance of ICD coding.

6 Conclusion and Future Works

In this paper, we propose the HieNet, which employs multi-channel CNN to encode the document
representation, bidirectional hierarchy encoder to capture the hierarchy features, progressive
mechanism improve the accuracy of topK predicted codes, and personalized PageRank to obtain
code co-occurrence. HieNet yields strong improvements over previous methods, while providing
the new state-of-the-art performance on both MIMIC-II and MIMIC-III.

However, for input, the future works need to pay more attention to multi-type input. The input
can be medical image (i.e., chest radio graph), structured information (i.e., prescriptions), unstruc-
tured data (i.e., clinical texts), etc. Inspired by the effectiveness of the progressive mechanism, we
can build a multi-model prediction model in future.
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