
Noname manuscript No.
(will be inserted by the editor)

App Review Driven Collaborative Bug Finding

Xunzhu Tang · Haoye Tian ·
Pingfan Kong · Kui Liu · Xin Xia ·
Jacques Klein · Tegawendé F. Bissyandé

Received: date / Accepted: date

Abstract Software development teams generally welcome any effort to expose
bugs in their code base. In this work, we build on the hypothesis that mobile
apps from the same category (e.g., two web browser apps) may be affected by
similar bugs in their evolution process. It is therefore possible to transfer the
experience of one historical app to quickly find bugs in its new counterparts.
This has been referred to as collaborative bug finding in the literature. Our
novelty is that we guide the bug finding process by considering that existing
bugs have been hinted within app reviews. Concretely, we design the Bu-
gRMSys approach to recommend bug reports for a target app by matching
historical bug reports from apps in the same category with user app reviews
of the target app. We experimentally show that this approach enables us to
quickly expose and report dozens of bugs for targeted apps such as Brave
(web browser app). BugRMSys’s implementation relies on DistilBERT to
produce natural language text embeddings. Our pipeline considers similarities
between bug reports and app reviews to identify relevant bugs. We then focus
on the app review as well as potential reproduction steps in the historical bug
report (from a same-category app) to reproduce the bugs. During evaluation,
we consider 300 bug reports that we compare to thousands of user reviews from
Brave: BugRMSys recommends 23 bug reports from Firefox that may be
relevant for Brave. After reproduction, we indeed confirm 4 bugs in Brave.
The whole process takes less than 1 hour. In contrast, until BugRMSys was

X. Tang, H. Tian, P. Kong, J. Klein, T. F. Bissyandé
SnT, University of Luxembourg
E-mail: {xunzhu.tang, haoye.tian, tagewende.bissyande, jacques.klein}@uni.lu

K. Liu
Hua Wei
E-mail: brucekuiliu@gmail.com

X. Xia
Hua Wei
E-mail: xin.xia@acm.org

2 Xunzhu Tang et al.

applied, some buggy behavior mentioned in a user review of Brave was left
unattended for nearly 3 months. At the time of submission, that bug was al-
ready fixed by the developers thanks to BugRMSys. Overall, after applying
BugRMSys to six popular apps, we were able to identify, reproduce and re-
port 20 new bugs: among these, 9 reports have been already triaged, 6 were
confirmed, and 4 have been fixed by official development teams, respectively.

Keywords Bug finding · App review · Bug similarity

1 Introduction

Modern apps must evolve quickly to adapt to a fierce competition in app
markets where users have varied choices among feature-rich apps [32]. Unfor-
tunately, the fast iteration in app updates often results in defects being found
by users after releases [3]. Various research efforts based on static analysis [14,
19,48] and dynamic testing [13,50,6,45,22] have therefore been carried out to
detect bugs before releasing apps. Bug-free apps remain however a myth and
even popular apps, which are intensively used by large user communities, often
display simple but annoying defects [6,1,47]. Through app reviews, users can
provide feedback on buggy behaviour that sometimes go overlooked by app
developers for various reasons: reviews can be redundant and uninformative
(e.g. simple praise or dispraise repeating the star rating) [26]. App reviews
are also time-consuming to exploit and can mislead the identification of fault
locations [43]. In contrast, official bug reports filed in the issue tracker are the
focus of developer communities since these reports tend to be more readily
exploitable for bug resolution.

It is noteworthy that if recurring bugs are not swiftly addressed by devel-
opers, they will lead to negative app reviews with significant impact on app
score in app markets and other severe consequences such as app fails [21].
The aforementioned situation calls for a more careful consideration of user
reviews by developers. In particular, it would be appealing to translate app
reviews into bug reports that can be used by developers as starting points
in their fight against bugs. However, there exists a significant gap between
the language of user reviews and the language of developer bug reports. The
former is generally formal and technically-written while the latter is informal
and colloquially-written. In a recent work, Haering et al. [10] proposed a deep
learning approach to match app reviews and bug reports with the ambition
of easily tracking whether an issue reported in app review was already filed
as an official bug report, which should increase bug fixing priority. While we
subscribe to the claim that user feedback often lacks information that is rel-
evant for developers (such as steps to reproduce or affected versions) [31,61],
their approach (1) does not address the key problem of review deluge, and (2)
misses the opportunity to reveal new bugs to the developers. Indeed, on the
one hand, for a popular app, there can be thousands of new reviews every day,
most of which are noisy for developers since they do not offer insights into
bugs. On the other hand, some app reviews may actually mention important

App Review Driven Collaborative Bug Finding 3

and annoying bugs which can impact user experience for a large number of
users without ever being reported formally in the issue tracker.

In another research direction, Tan et al. [49] have proposed Bugine [49], a
collaborative bug recommendation system that aims at pairing similar issue
reports across different apps. Thanks to Bugine, they have empirically shown
that it is indeed possible to match similar issue reports across different apps.
However, Bugine can only report issues across apps where the relevant UI
design is of high visual similarity. Besides limited to only UI-related bugs,
Bugine does not take target app’s review into consideration, which enable it
no ability to pick up useful bugs as input.

Following up on the hypothesis of the work by Tan et al., we performed a
preliminary study (cf. Section 2) to check whether apps in the same category
(e.g., two web browser apps or two calendar apps) tend to face similar devel-
opment issues. Eventually, we observed that apps in the same category share
similar issues since these apps (1) are built by leveraging the similar develop-
ment frameworks for similar functionalities (e.g., Unity for gaming apps), (2)
have similar UI design logic, and (3) use the same storage/notification/hosting
services (e.g., FireBase) [23,24]. It seems therefore promising to build on the
experience of historical apps to improve new apps. Additionally, prior work [20,
2] have demonstrated that interactions among developers of different software
can be effective to improve the quality of each software.

This paper. We hypothesize that if app A and app B belong to the
same category (we consider the categories listed in the Wikipedia enumeration
of popular free and open source Android apps1, e.g., web browsers, Games,
etc.), bug reports from one can be relevant for discovering bugs in the other.
Unfortunately, there can be too many bug reports filed in some app categories.
For example, in the web browser category, the issue tracker of Firefox alone
has received over 20 thousand bug reports. It is therefore necessary to identify
those issues that are more likely to be relevant for the app under-study (i.e.,
the target app for bug discovery). To that end, our novel strategy in this work
is to explore app reviews written by users for the target app. Our idea is that
app reviews, which may contain hints about buggy behaviour observed by
users of the target app, can be matched to bug reports from other apps in the
same category.

We propose BugRMSys, a collaborative bug finding approach that is
guided by user app reviews. BugRMSys finds bugs by recommending a bug
report of app A (e.g., the excerpted bug report of Signal in Figure 1(a)) as
being relevant to the target app B (i.e., Wire) given the similarity of the bug
report with app reviews from users ofB (e.g., the excerpted user review of Wire
in Figure 1(b)). With the app review in B matched with a similar bug report
in A, we reproduce the bug in B by leveraging reproduction steps in the bug
report and additional information details from the app review. If reproduction
is successful, we can confirm having found a “new bug” that will be filed into

1 https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_
applications

https://en.wikipedia.org/wiki/List_of_free_and_open- source_Android_applications
https://en.wikipedia.org/wiki/List_of_free_and_open- source_Android_applications

4 Xunzhu Tang et al.

(a) Bug report of Signal. (b) App review of Wire.

Fig. 1: Example of bug report and app review matched by BugRMSys.

(a) Newly opened issue for Wire. (b) Response from official devel-
oper.

Fig. 2: Bug found by BugRMSys and response from official developer (some
texts have been hidden for anonymity).

the official issue tracker for app B. For example, the corresponding bug found
by BugRMSys in Wire was reported to its developers (shown in Figure 2(a)),
and was finally got fixed by Wire’s official developer (Figure 2(b)) in one day.
Surprisingly, the relevant user app review had been submitted since four years,
but there is no any corresponding bug reported in the official issue tracker of
the app yet. To the best of knowledge, this scheme of collaborative bug finding
driven by app reviews, has not been previously explored in the literature.

The main contributions of our work are as follows:

– We present insights from an empirical study about the similarity of issues
reported across apps from the same category. These insights provide the
intuitive basis for collaborative bug finding.

– We deviseBugRMSys, a bug recommendation system, which leverages sim-
ilarities of user app reviews with bug reports to identify which bug reports
from same category apps are good candidates to attempt a bug reproduction
on a target app.

– We demonstrate experimentally that BugRMSys is effective: applied to 6
apps from different categories, we find and reproduce 20 new bugs (i.e., bugs
that are not yet reported in the issue trackers of these apps): 9, 6, and 4
reports have been already triaged, confirmed, fixed by official development
teams, respectively.

App Review Driven Collaborative Bug Finding 5

Table 1: The Apps and their category.

App Name Repo Name Category # Downloads #Bug Reports

Signal Signal-Android privacy security >50 million 11,980
Wire wire-android privacy security >1 million 3,677
Firefox Android fenix Web Browser >100 million 24,087
Brave brave-browser Web Browser >50 million 21,436
NextCloud nextcloud Office Suite >1 million 9,890
owncloud owncloud Office Suite >0.1 million 3,571

2 Preliminary Study

In this section, we conduct a preliminary study to evaluate the hypothesis
of our work. Specifically, we seek to check that apps from the same category
are more likely to share similar bug reports (and thus a bug report from
app A could be relevant for app B if A and B are from the same category).
We focus the comparison by estimating the overlap (i.e., the proportion of
common words) between bug reports. To that end, we analyze the overlap rate
of topK frequent words of reports for apps from same or different categories.
From a more qualitative perspective, we also analyze which types of words are
frequently shared.

(a) signal-others (b) wire-others (c) firefox-others

(d) brave-others (e) nextcloud-others (f) owncloud-others

Fig. 3: Overlap rate of hot words of category apps’ bug issues.

2.1 Empirical Setup

Apps: To conduct our preliminary study, we consider six popular apps listed
in the Wikipedia page of free and open-source Android apps. Table 1 sum-
marizes statistics about these apps. We consider Signal and Wire within
the Privacy-Security category. Both apps have been downloaded more than
one million times from the Google Play store. We also consider Firefox and
Brave, two widely popular in the Web Browser, category. Finally, we consider
Nextcloud and Owncloud among the apps in the Office Suite category.

Bug Reports: For each app, we have collected all bug reports that are
present in their issue tracker system. The number of collected bug reports is

6 Xunzhu Tang et al.

given in the last column of Table 1. Note that, for our experiment, we employ
the Python NLTK [25] library and self-defined filters to pre-process the bug
reports for natural language processing. We apply typical pre-processing tasks
to remove stop words [54], punctuation, digits, etc.[9]. Meanwhile, to limit
experimental bias, we set 10 different sizes K for the set of most frequent
words, increasing step-wise until an order of magnitude: we consider Top100,
Top200,..., Top1000 frequent words. Concretely, to build each TopK set for each
app, we extract the K most frequent words in its bug reports. By analysing the
TopK frequent words, we can assess the differences in shared words between
bug reports of same-category apps and different-category apps. Applied to all
set ten TopK sets, we can further check for potential trends, while empirically
identifying the value of K under which the overlap (i.e., the proportion of
shared words) is the highest.

Notation: In the rest of this paper, the category Privacy-Security, the
category Web Browser, and the category Office-Suite are referred to as PS,
WB, and OS, respectively. We also note the three pairwise combination of apps
from the same category as follows: PS-PS: ¡Signal, Wire¿; WB-WB: ¡Firefox,
Brave¿; OS-OS: ¡Nexcloud, Owncloud¿. Similarly, we consider 12 pairwise com-
binations of apps from different categories as follows: PS-WB: <Signal, Fire-
fox>, <Signal, Brave>, <Wire, Firefox>, and <Wire, Brave>; PS-OS: <Signal,
Nextcloud>, <Signal, Owncloud>, <Wire, Nextcloud>, and <Wire, Owncloud>;
WB-OS: <Firefox, Nextcloud>, <Firefox, Owncloud>, <Brave, Nextcloud>, and
<Firefox, Owncloud>.

2.2 Hypothesis Analysis

In this section we check whether our hypothesis is valid from the quantitative
and qualitative aspects of bug reports.

Quantitative Analysis: The results of the quantitative study are pre-
sented in Figure 3, where for each app X, we compute the percentage (or rate)
of overlap, i.e., the percentage of shared words between the TopK frequent
words in the bug reports of X and the TopK frequent words in the bug re-
ports of another app Y. We note that, except for the ¡Owncloud, Nextcloud¿
pair, both same-category and different-category pairs present that
the percentage of shared words increases or reaches a plateau (often
after K=500). In all six diagrams, and for all K ∈ {100, 200, ..., 1000}, the
percentage of shared TopK frequent words is the highest when apps X and
Y are from the same category (i.e., for Signal and Wire, Firefox and Brave,
and, Owncloud and Nextcloud). It indicates that, bug reports of same-
category apps could present higher similarity than bug reports of
different-category apps.

Qualitative Analysis: We further investigate to what extent frequent
words in bug reports of same-category and different-category apps share. To
this end, we conduct the quantitative analysis by setting the threshold of
frequency as 20 to select the most frequent words in bug reports (all words

App Review Driven Collaborative Bug Finding 7

(a) PS-PS (b) WB-WB (c) OS-OS

(d) PS-WB (e) OS-PS (f) WB-OS

Fig. 4: Distribution of Top20 shared frequent words in same-category app
pairs and different-category app pairs.

are trimmed to keep their trunk, e.g., crashes→crash). With the top-20 most
frequent words of each app, we assess to what extent different app pairs share
these words, and how frequent the shared words occur in each app. Table 2
lists the top20 frequent words of each app.

We have three pairs of same-category apps and twelve different-category
apps. Considering the space limitation, we only show three pairs of different-
category apps, and all data of twelve pairs of different-category apps are pub-
licly available in our replication package2. For the PS category, as shown in
Figure 4(a), the top frequent words shared by Signal and Wire include mes-
sage, conversation, call, etc. Apparently, these shared words represent the key
features of these two apps (i.e., communication tool). They also share some
general hot words about the Android Framework, such as android and app.
For the WB category (cf. Figure 4(b)), the words shared by Firefox and Brave
contain page and tab, of which both are highly relevant to the web browser.
While for the category of OS (cf. Figure 4(c)), Nextcloud share “fix, file, folder,
upload” words with Owncloud, which are related to the cloud storage system.
Such results indicate that the bug reports of same-category apps in-
deed share their field-specific information. On the other hand, as shown
in Figures 4(d), 4(e), and 4(f), the bug reports of different-category app pairs
share less words than the same-category app pairs, and the shared words are
mainly about the general information or problem of the Android framework
itself (with words such as android, app, crash, add).

Regarding words that are not shared, by differentiating the top20 frequent
words and the shared words of the same/different-category pairs, we note that
those non-shared frequent words of the same-category app pairs are about
general features or problems (e.g., crash, notification, etc.), while those non-
shared frequent words of the different-category app pairs are related to their
main features of those apps. For example, given ¡Signal, Firefox¿, a different-

2 https://github.com/BugRMSys/BugRMSys/blob/main/12_different_
category_apps

https://github.com/BugRMSys/BugRMSys/blob/main/12_different_category_apps
https://github.com/BugRMSys/BugRMSys/blob/main/12_different_category_apps
https://github.com/BugRMSys/BugRMSys/blob/main/12_different_category_apps

8 Xunzhu Tang et al.

Table 2: Top20 frequent words in bug reports for each app.

App Top20 frequent words

PS
Signal

signal, message, sms, group, android, app,
contact, send, mms, conversation,
notification, feature, call, add, fix,
request, crash, textsecure, text

Wire
fix, feature, add, conversation, avs, part,
message, bump, wire, new, update, call,
user, remove, app, android, video, version

WB
Firefox

bug, fnx, android, tab, add, tabs, update,
search, issue, menu, components, fenix,
button, page, crash, new, ui, strings,
version

Brave

brave, x, release, android, chromium, add,
desktop, test, run, rewards, manual, ads,
tab, browser, upgrade, wallet, new,
settings, page, update

OS
Nextcloud

app, upload, bump, android, crash, file,
nextcloud, fix, folder, auto, stable, add,
error, rc, new, use, account, server

Owncloud
android, upload, new, file, app, folder, fix,
owncloud, feature, release, bug, request,
update, share, add, view, arch, bump

category app pair, the non-shared words in Firefox contain tabs, browser,
pages, ads, which are associated with the traditional features of web browser:
advertisement, web pages, etc.

To sum up, the bug reports of apps in the same category share more similar
information than the apps in different categories, and the shared information
is prone to the specific features related to the category with the frequently
used words.

Hypothesis ➠ ❝With the commonness/difference on the quantitative and
qualitative analysis of bug reports in the same/different categories, we would
like to intuitively hypothesize that it would be feasible to employ experience
(e.g., bug reports) from same-category apps and the community (reviews)
of target app B to discover potential bugs of B.❞

App Review Driven Collaborative Bug Finding 9

3 BugRMSys

Figure 6 depicts the general workflow of the approach for app review driven
collaborative bug finding.
Notation: we will refer to app A and app B as two apps that belong to the
same category.

BRs
(History)

BRs
(Target App)

User Reviews
(Target App)

Input

D
is

til
B

ER
T

To
ke

ni
ze

r

D
is

til
B

ER
T

Em
be

dd
in

g
To

ol

Embedding Module

Exist in Bugs
or not ?

Yes

Matched reviews ?

No

No

Yes reproduce

Issue
tracker
(Target
App)

Exploration Module Reproduction & Reporting

No

Embedding of BR

Embeddings of BRs (Target App)

Embeddings of reviews
(Target App)

BR, review,
and reproduction

Yes

STOPMeans

Fig. 5: Overview of BugRMSys.

BR
(History)

BR: Bug Report History: Bug Reports in Same-category Apps

Review: User Review from Google Play Store

BR exist in
target app?

User app
review

mention?

Yes

No

No

BR can be
reproduced?

Yes
Submit

BR&Review
to target
tracker

Yes

No

: STOP Sign

Fig. 6: General workflow of app review driven collaborative bug finding.

Our approach attempts to leverage the development experience of the his-
torical app A to find bugs in the target app B. The workflow therefore starts
with a representative bug report that has been handled in the development of
app A. If a similar bug report exists in the issue tracker of the target app B un-
der study, the bug finding process is halted and must be restarted with another
bug report from app A. Otherwise, the workflow proceeds to check whether
the bug report content is similar to some user reviews (that has therefore gone
overlooked). If one or several relevant app reviews are found, we must attempt
to reproduce the bug in app B based on reproduction steps in the bug report
of app A as well as specific details in user review of B. In our evaluation, once
the buggy behavior is confirmed through reproduction of the bug report, we
further submit a new bug report in the issue tracker of app B. In the remain-
der of this section, we will present a real-world example before detailing the
technical approach for bug recommendation.

10 Xunzhu Tang et al.

Bug report
(Brave)

Our
approach

Can not synchronize history from
desktop-firefox to android-firefox 2022-02-10

Confirmed by official developer Successful
reproduction

&
New bug submission

Review
&

bug report

matched

Cannot sync with Pc.
Why is the only option to sync qr code? 2022-02-06

Review
(Firefox)

Changes to sync QR code 2021-11-18

Firefox

Fig. 7: Running example of BugRMSys.

3.1 Running Example

Figure 7 illustrates the case where we leveraged BugRMSys to discover a
new bug in the web browser app Firefox. By iterating over bug reports from
the active development repository of Brave, we identified a bug report which
refers to synchronization with QR Code. A similar bug report was absent from
the issue tracker of Firefox. After matching by BugRMSys, a user review of
Firefox had clearly stated a similar problem “Cannot sync with Pc. Why is
the only option to sync qr code?”. With the user’s assessment, the bug report
might indeed be relevant, we thus explore the steps enumerated in Brave’s bug
report to reproduce the matched problem in Firefox. Surprisingly, the bug was
successfully reproduced within a few minutes. We then submitted a bug report
with two screenshots into the issue tracker of Firefox, which was eventually
confirmed by the Firefox development team in 4 days.

Intuitively, our bug recommendation could have started with considering
available user app reviews and try to correlate with historical bug reports from
other apps in the same category of the target app. Unfortunately, in practice,
most app reviews do not provide usable information. Therefore, we propose
to initiate the search with the bug reports, which are in lesser numbers, and
are more structured. Nevertheless, many bug reports in the same category as
the target app are actually raising irrelevant issues. Therefore, it is important
to further check if such potential issues have caught user attention and lead
them to write reviews that mention them. This motivates the need to devise
a reliable mechanism to precisely match useful app reviews with relevant bug
reports.

3.2 Approach

Figure 5 illustrates the details of automatically finding bugs with BugRMSys,
which includes two main modules: an embedding module and an exploration
module. The remainder of this section describes how the embedding module
deals with bug report and app review text representation, and how the explo-
ration module eventually identifies relevant bug reports for recommendation.

App Review Driven Collaborative Bug Finding 11

3.2.1 Embedding

To embed app reviews and bug reports into vector representation for natural
language text semantic similarity computation, we resort to state-of-the-art
pre-trained deep learning models. In practice, when reasoning about app re-
views and bug reports, we face at least two major challenges:

1. App reviews and bug reports are organized differently, and their vocabu-
laries differ from each other (technical vs non-technical terms). In addition,
app reviews are more error-prone (e.g., spelling mistakes), may include
emoticons, and may contain non-technical references (e.g., swearing). Re-
views also often repeat, i.e., the same review can be submitted by the same
user several times.

2. Bug reports are written based on a technical template that includes descrip-
tion, title, reproduction steps. They can also include code-specific technical
terms such as test names (e.g., “RewardsBrowserTest”). A complete
bug report is often very long, hence difficult to capture overall semantics.

Towards providing a precise and effective representation model for bug
reports and app reviews, we address each challenge specifically in BugRMSys:

For challenge (1), we use common NLP pre-processing techniques to elim-
inate noisy words and/or reviews. We first lowercase all tokens and remove
punctuation as well as stop words [35,51,44]. We then use a regularization
function to remove digits and emoticons. In addition, we drop too short and
too long reviews based on outlier thresholds: empirically, we determined that
reviews containing fewer than 10 words or more than 200 words should be
dropped as they are outliers. We adopt the rule-based methods in [28,52] to
correct word repetitions and spelling mistakes.

For challenge (2), we must carefully process bug reports to extract rele-
vant information. Indeed, prior work [60,31] have established that the detailed
bug report descriptions usually contain significant noise, including the report
template itself. Previous study stated that the title of a bug report already
includes the essential content of the bug report description [18,16,53]. Thus,
in our approach, we consider the bug report titles as input to drive the recom-
mendation system. Other details (e.g., reproduction steps) will be considered
in the reproduction and submission phase.

To address the challenge for capturing semantic features from the app re-
views and bug reports, we resort to an effective method of converting bug
reports and app reviews into numerical representations. There are various
techniques [58,29,36,33,15] in the NLP community for mapping texts into
tokens and low-dimension representations. In recent years, pre-trained deep
learning methods [5,38] have become popular across communities given their
practicality and their effectiveness. In this work, we consider DistilBERT [38],
a pre-trained lightweight network model built on the top of BERT [5], that of-
fers similar performance with transformer-based models as BERT, but requires
significantly less computer resource and training/tuning time than BERT. And
DistilBERT employs a byte pair encoding method [40] as its word tokenizer

12 Xunzhu Tang et al.

which empowers it to alleviate “out of vocabulary” issues and to recognize com-
pound words, especially for variables and camel-case (and other composition-
based) named elements. We reuse the same function defined in [5] and apply
its default setting to get the embeddings of both bug reports and app reviews.
The embeddings of bug reports and app reviews can be used for calculating
the document’s cosine similarity.

3.2.2 Exploration

Once the embedding module has produced numeric representations for bug
reports and app reviews, the exploration module attempts to identify those
reviews that are relevant for a given bug report. If a user review is found,
the bug report can be recommended (supposing that no similar bug report
was already filed for the target app). To this end, following empirical findings
from previous studies [8] dealing with text similarity metrics [55], we resort to
employing the cosine similarity [42] between low-dimensional representations
of bug reports and app reviews to measure their relatedness. BugRMSys
then prioritizes app reviews as being potentially relevant or not by referencing
a threshold value to dismiss app reviews that should not be listed. Therefore,
if one app review of B is found to be similar with a bug report in A, the bug
report will be recommended as describing a bug that is relevant for the target
app B. Otherwise, the bug report will not be recommended. The threshold
setting is presented in Section 5.1.

4 Experimental Design

4.1 Research Questions

Our experiments aim at answering the following research questions:

– RQ-1: To what extent is the BugRMSys bug recommendation
approach driven by app reviews effective? Our approach is devised
to recommend bugs with our hypothesis. In this RQ, we first investigate
to what extent app reviews can be used to recommend the bug report for
the target app. Before that, we build a “ground truth” set of bug reports
pairwise combinations (from a target app and a same category app).

– RQ-2: Can BugRMSys expose bugs in real-world apps based on
existing app reviews? With this research question, we explore the feasi-
bility of exposing bugs in real-world apps by BugRMSys with 20 apps of 9
categories. We investigate both the Exploration module for bug recommen-
dations, as well as the actual bugs that developers can confirm.

– RQ-3: How does BugRMSys compare against previous bug rec-
ommendation systems? With this research question, we compare the bug
recommendation approach of BugRMSys against the bug recommendation
systems (DeepMatcher [10] and Bugine [49]) in three dimensions (inputs,
automation, effectiveness).

App Review Driven Collaborative Bug Finding 13

4.2 Dataset

We investigate the feasibility of our hypothesis with BugRMSys, we first
curate a dataset that collects bug reports and app reviews from 20 free and
open source apps of 9 categories. For each app, we collect bug reports from its
GitHub issue tracking system. App reviews are selected by checking whether
an app review is related to a concrete bug report. App reviews are further
curated following the order given after a sort on “helpful”. A review is given a
“helpful” score according to the number of users who agree with it. In a recent
study study, Häring et al. [10] have used this score to measure the importance
of a review. Note that, collected bug reports and app reviews are written in
English. Table 3 summarizes the information of collected data.

Table 3: Dataset Summary.

App Category # Apps # bug reports # app reviews

privacy security 2 15,657 15,428
web browser 2 45,523 166,360
office suites 2 13461 2,260
emulator 3 25,822 43,709
communication 2 4,555 3,166
game 2 1,590 3,098
multimedia 2 5,898 53,746
reading 2 3,704 62,755
science and education 3 16,045 36,413

Total 20 132,255 386,935

4.3 Evaluation Metrics

Our study leverages a variety of metrics to validate the experiments. First,
we rely on overlap rate analysis [17] to investigate our hypothesis about the
similarity of bug reports across same-category apps.

Overlap Rate: Given two sets X and Y , Overlap rate of X with Y is
computed as follows:

Overlap(XY) =
size(|X ∩ Y |)

size(X)
, (1)

where size denotes the size function for sets. If both sets have the same size
(e.g., in our case, we select topK frequent words in the different sets of bug
reports), then Overlap(XY) == Overlap(YX).

To evaluate the overall performance of BugRMSys, we use Acc@N and
Mean Recriprocal Rank (MRR), which are widely used metrics for recom-
mender systems [57,59,37].

14 Xunzhu Tang et al.

Acc@N: Acc@N hit measures the retrieval precision over the topN rec-
ommended issues or reviews in the ranked list:

Acc@N =
ΣN

i (pair(i))

LENGTH
, (2)

where LENGTH represents the length of tested ground truth; pair(i) means if
the i-th issue B hit the i-th topN reviews relevant to issue A, if yes, pair(i) =
1, else 0. Overall, Acc@N is an approach used in previous research describing
how often the issue in target B is among the topN Nearest Neighbours (by
cosine) of an DistilBERT word space.

MRR:MRR is short for mean reciprocal rank and is a popular metric used
to evaluate the efficiency of recommendation system [41,4,27]. The equation
of accuracy is described as follows:

MRR =
1

N
∗Σ|N |

i=1

1

ranki
, (3)

where N is the length of ground truth; For the i-th issue (app A) in ground
truth, ranki represents the position of recommended review which also relevant
to issue in app B.

4.4 Implementation & Availability

We first developed two crawlers for automatically collecting bug reports and
app reviews based on python packages: PyGithub3 and google play scraper4,
respectively. To filter most useless reviews, we only select reviews in the text
size from 10 to 200.We have implemented a prototype version of BugRMSys
using Python (and associated frameworks) with a well-known, light-weight,
transformer-based, and contextual pre-trained model, DistilBERT, to extract
vector representations for both bug reports and app reviews. The dataset and
the replication package of BugRMSys are publicly available at:

https://github.com/BugRMSys/BugRMSys

5 Experimental Results

In this section, we conduct qualitative and quantitative analysis to evaluate
BugRMSys. To this end, we evaluate the effectiveness of BugRMSys, we
compare BugRMSys with state-of-the-art tools for bug recommendation, we
study the characteristics of BugRMSys, and we explore the transferability of
BugRMSys.

3 https://pypi.org/project/PyGithub/
4 https://pypi.org/project/google-play-scraper/

https://github.com/BugRMSys/BugRMSys
https://pypi.org/project/PyGithub/
https://pypi.org/project/google-play-scraper/

App Review Driven Collaborative Bug Finding 15

5.1 [RQ-1]: Effectiveness of BugRMSys

To answer RQ1, due to the huge manual effort for assessing similarity of app
reviews with bug reports, we focus on a single same-category app pair (FireFox,
Brave), where FireFox will be the input app and Brave the target app (i.e.,
we use bug reports from Firefox to find new bug reports in Brave by matching
Brave user reviews). Note that in the running example (cf. Section 2), we had
illustrated a bug case where Firefox was the target app and Brave was the
input app. This is an additional argument that BugRMSys can explore the
experience of any app and leverage it for any other same-category counterpart
regardless of which app appears to have more historical data.

We start by building a ground truth dataset to assess the ability of Bu-
gRMSys to find relevant bug reports for recommendation. To that end, the
idea is to first try to find existing Brave bug reports that are similar to the ones
of FireFox to build a set of pairs of similar bug reports< BRFirefox, BRBrave >.
Then, for each pair < BRFirefox, BRBrave >, we rely on BugRMSys to iden-
tify Brave app reviews that matchBRFirefox. However, we only consider Brave
app reviews which precede the creation time of the corresponding BRBrave.
Finally, we manually check if the identified Brave app reviews match the cor-
responding Brave bug report BRBrave. This would indicate that BugRMSys
would have been useful to automatically recommend the Firefox bug report as
relevant to Brave.

In practice, to build our set of similar bug reports, we randomly picked
3,000 bug reports from Firefox. By using a cosine similarity threshold of 0.915,
we were able to identify 81 bug report pairs < BRFirefox, BRBrave > where
the Firefox and Brave bug reports are highly similar. Note that this ground
truth construction may be too conservative: there are possibly other Brave
bug reports that are also semantically similar to a given Firefox bug report.

Recall that the objective of BugRMSys is to match bug reports to app
reviews. In this case, we assess whether, for each pair of the ground truth, we
can match the Firefox bug report with app reviews that are relevant (based
on human expertise6) to the associated Brave report. If so, we can conclude
that BugRMSys would have been able to recommend the Brave bug report.

For our experiments, we applied BugRMSys on each of the 81 Firefox
bug reports to match Brave app reviews. We retain only the top 3 matched
reviews per bug report. Overall, among the 81 top1 reviews recommended
by BugRMSys, 21 could be confirmed as indeed semantically similar to the
content in the Brave bug report associated in the ground truth pair.

We further confirm 32 and 38 (at Top 2 and Top 3 respectively) app review
matches. Table 4 details our results by also providing the Accuracy and MRR
scores. Overall, with Top 3 recommendations on a conservative ground truth,

5 We decided on 0.91 based on an empirical validation: the higher the similarity threshold
is, the less pairs will be matched, and at the same time matched reviews are closer to bug
reports. We decide on a high threshold to maximize high quality results.

6 This is the core challenge of BugRMSys: to find semantic similarity between a bug
report and an app review

16 Xunzhu Tang et al.

Table 4: Results of Acc@N and MRR@N. ”App review Hits” represents the
number of times BugRMSys matches the relevant app reviews associated
to the ground truth bug report of Brave: this is a proxy for estimating that
BugRMSys would have been able to recommend the Firefox bug report as
relevant to Brave.

81 relevant bug pairs out of
3K bugs from Firefox

@1 @2 @3

App Review Hits 21 32 38
Value of Acc@N(%) 25.93 39.51 46.91
Value of MRR@N(%) 25.93 26.50 35.19

we reach almost 50% hit ratio. Note that, while BugRMSys matches Firefox
bug reports with Brave app reviews, our effectiveness evaluation is to check
whether the matched app reviews are semantically relevant for Brave bug
reports. This is the practical and ultimate concern of our bug recommendation
scheme.

Table 7 presents an extract of our set of 81 similar bug reports pairs by
focusing on three pairs, the corresponding app user reviews and the result of
our manual analysis. The full results are detailed on our Github repository7.

✍ Answer to RQ-1: ▶ The Acc@N and MRR@N values show that Bu-
gRMSys is reasonably effective in matching relevant app reviews of a target
app to bug reports from same-category apps in order to drive bug recom-
mendation. ◀

5.2 [RQ-2]: Feasibility of BugRMSys

5.2.1 Bug recommendation in the wild

We conduct extensive execution of BugRMSys on data from 20 apps in 9
categories to recommend bugs. Due to space limitation, we report in Table 5
the statistics of bugs recommended by BugRMSys for the top10 apps having
the most recommended bugs. We note that, thanks to BugRMSys app-review
driven approach, the collaborative bug finding allows to sift between a few
hundreds to a few thousands bug reports from same-category apps in order to
recommend8 only a few (1.63%) of bug reports as being relevant to the target
apps.

Since each recommended bug is found by correlating information in its
app reviews, we propose to estimate the potential time gain BugRMSys has
brought by highlighting the buggy behaviour users complained about in un-
official channels. We compute the distribution of time elapsed since the app

7 https://github.com/BugRMSys/BugRMSys/blob/main/RQ1UserCase_
firefox2brave.csv

8 We set a high similarity threshold at 0.9. This value can be fine-tuned following the
practitioner’s objectives.

https://github.com/BugRMSys/BugRMSys/blob/main/RQ1UserCase_firefox2brave.csv
https://github.com/BugRMSys/BugRMSys/blob/main/RQ1UserCase_firefox2brave.csv

App Review Driven Collaborative Bug Finding 17

Table 5: Ranked apps based on the number of potential bugs.

Target # of bug reports searched # app reviews # recommended
app (from same category apps) (for the target app) bugs
Brave 10,000 10,000 208
Nextcloud 3,489 1,143 147
Wire 10,000 2,515 75
VLC 599 5,556 59
Firefox 10,000 10,000 52
Dolphin 2,437 2,498 44
Wordpress 4,139 2,714 44
PPSSPP 1,666 6,846 39
Mupen64Plus 2,437 1,401 39
Fbreader 726 3,914 33

review creation date and the BugRMSys bug recommendation date. On av-
erage, specially for Firefox and Brave in Table 5, the app reviews were created
22.2 and 33 days before we submit the bug reports, respectively.

✍ Answer to RQ-2.a ▶ BugRMSys can help triage bug reports from
same-category apps to recommend a reasonable number of bugs in a target
app. We also show that BugRMSys helps to highlight bugs that could have
remained overlooked for a long time in app reviews, e.g. 22.2 days earlier
for Firefox, and 33 days earlier for Brave. ◀

To assess whether the bugs recommended by BugRMSys are real bugs, we
further reproduce each recommended bugs manually, and submit the success-
fully reproduced bugs in the issue tracker of the related app. Since the manual
reproducing work requires extensive efforts, we will focus our investigation on
four popular apps: Wire, Brave, FireFox and Nextcloud.

The numbers of recommended bugs, (successfully) reproduced bugs (these
reproduced bugs are selected with their similarities, and the top-44 most sim-
ilar ones are selected), and confirmed or fixed bugs are presented in Table 6.
The details of the reported bugs can be found on our repository9. We remind
that we can recommend a bug report from app A (the first column in Table 6)
as relevant to the target app B when BugRMSys matches the bug report of
A with user app reviews from the target app B. We then use the “steps to
reproduce” present in the bug report of A, as well as the information present
in the app reviews of app B to reproduce the bug in the target app B. Finally,
for each bug that has been successfully reproduced in the target app B, we
submit the bug in the issue tracker of the app. As shown in the the last column
of Table 6, six bugs have been already confirmed or fixed by the developers
before this submission.

9 https://github.com/BugRMSys/BugRMSys/blob/main/new_bugs.md

https://github.com/BugRMSys/BugRMSys/blob/main/new_bugs.md

18 Xunzhu Tang et al.

Table 6: Previously unknown bugs detected with BugRMSys.
Input Target # of bug reports # app reviews # recommended # of reproduction # successully # replied, confirmed or
app app (input apps) (target app) bugs attempts reproduced bugs fixed bugs

Signal Wire 10,000 2,515 75 12 2 2, [✔ 2]
Firefox Brave 10,000 10,000 208 44 9 (1),2, [✔ 2]
Brave Firefox 10,000 10,000 52 24 4 (1), 1
Owncloud Nextcloud 3,489 1,143 147 12 5 (1), 1

482 90 20 (3), 6, [✔ 4]

∗“(#)” means the number of reported bugs replied by developers but not confirmed or fixed by them.
“[✔ #]” means the number of reported bugs confirmed and fixed by developers.

Table 7: Extract of our Ground Truth Dataset, Corresponding relevant app
reviews, and Manual check result.

Existing Bug Reports (input, target) TOP 3 RELEVANT REVIEWS in Brave (creation time always prior to the corresponding Brave bug report) MANUAL

App: Firefox
Data: 2020-08-21
Reports: Download does not
work on a custom tab (Slack)

App: Brave
Date: 2021-03-20
Report: Download [Status
Bar] Improvement

Date: 2020-08-22
Review: Downloader is very bad....pls increase and more work on download manager

TRUE

Date: 2020-08-10
Review: There is no download option in this could u pls update on this issue

TRUE

Date: 2020-10-18
Review:...it does not allow to manually add download tasks

TRUE

App: Firefox
Data: 2020-06-17
Reports: Report clickbait sites,
Protect user privacy

App: Brave
Date: 2020-06-22
Report: Warn users about
insecure Facebook and
Google privacy settings

Date: 2020-06-08
Review: Only browser that cheats about privacy. All claims about user privacy are bogus...

TRUE

Date: 2020-11-01
Review: Extremely convoluted privacy practices. They advocate for privacy but allow certain creepy sites ...

FALSE

Date: 2020-12-31
Review: Good privacy app. It doesn’t prevent websites from annoying redirections

FALSE

App: Firefox
Data: 2020-08-28
Reports: Invalid URLs can
be bookmarked and they
crash the browser

App: Brave
Date: 2020-11-06
Reports: Clicking URLs
outside of Brave opens a
blank browser window
with no URL

Date: 2020-06-11
Review: ”..., has come under fire for automatically redirecting URLs typed into the browser’s address bar ...

FALSE

Date: 2020-10-20
Review: One of the best browsers Imo. Only wish I could set links on the brave homepage manually...

FALSE

Date: 2020-10-13
Review: Its a good browser sometimes it reload all tabs when i open newly

FALSE

✍ Answer to RQ-2.b: ▶ Thanks to BugRMSys, we found 20 new bugs
efficiently (i.e., within a short period of time), among which six have been
confirmed or fixed by developers. These results demonstrate that BugRM-
Sys is relevant for exploring news bugs using its app reviews driven col-
laborative bug finding scheme. Since there is no training involved in Bu-
gRMSys, it can be readily applied to various apps from various categories
to help developers find bugs that have not yet been officially reported but
which users may have witnessed already. ◀

5.3 [RQ-3]: BugRMSys vs Prior Works

Ideally, we should evaluate the performance of BugRMSys in comparison
with prior works dealing with bug recommendations based on bug reports.
There are two state of the art approaches, DeepMatcher [10] and Bugine [49],
which are closely related.

DeepMatcher and BugRMSys both match app reviews with bug reports
based on text embedding using pre-trained DistilBERT. Experimentally, we
compare DeepMatcher against the BugRMSys by considering the ground
truth data built for RQ-1 (cf. examples in Table 7): we propose to manually
check whether the matched reviews with both approaches are relevant or not.
While all reviews matched by BugRMSys are relevant to buggy behaviour, we
observe that DeepMatcher only achieves a F1-score of 71% in filtering useful
reviews. We postulate that BugRMSys performs better partly because it
implements a focused collaborative bug finding approach where the matching
is done on bug reports of same-category apps.

We also compare against Bugine, which also performs collaborative bug
finding. We differ however as Bugine limits the matching to cases where apps

App Review Driven Collaborative Bug Finding 19

have the UI/components (while we consider apps from teh same categories).
We further consider app reviews to drive bug recommendation.

In the remainder, we further elaborate on the specific differences that pre-
vent comparison between prior works and BugRMSys. These differences re-
late to three aspects: (1) Differences in input, output, and workflow; (2) Dif-
ferences in automation level; (3) Performance in new bug finding.

5.3.1 Differences in input, output, and workflow

DeepMatcher employs user reviews for App B as input and recommends rele-
vant bug reports for App B. The workflow is: App review → Problem report →
Matched relevant bug reports. They only evaluate their tool on existing bugs
instead of exploring new bugs. Furthermore, DeepMatcher does not leverage
experience from other apps when investigating a target app. Their approach
further suffers from the redundancy problem in app reviews.

Bugine employs issues in apps with same UI components as their database.
They focus on building a automatic test generation from bug reproduction
steps and run the test on target app with manual check. Bugine has been
used to explore new bugs successfully. However, there is a great limitation
in this approach: it only considers app issues with same-UI components into
consideration, which can reduce the feasibility of learning from other apps.

5.3.2 Difference in automation level

Different from DeepMatcher, BugRMSys will not process a large number
of bug reports: we focus on same-category apps to match relevant reviews
of App B. After manual check, we have verified that when we feed a bug
report into BugRMSys, the matched reviews are 100% related to some bugs.
By building on same category apps (i.e., with similar functionality and usage
steps) reproduction and localization of bugs is eased.

For Bugine, finding apps with same-UI components is a time-consuming
task. In addition, using issues from same-UI apps makes it hard to transfer
the learned expertience to other types of issues.

5.3.3 Performance in bug finding

The ability of DeepMatcher to find new bugs has not been evaluated. Bugine
reported having found 34 new bugs in 5 evaluated apps. With BugRMSys,
within a week, we were able to recommend, reproduce and identify 20 new
bugs across 6 apps. 4 such bugs are already fixed by the app developers.

✍ Answer to RQ-3:▶ BugRMSys, in comparison to Deepmatcher, is
effective for filtering out relevant app reviews. Compared to Bugine, Bu-
gRMSys is scalable and can be applied to a larger range of bug types, while
avoiding duplication of recommending bugs that were already reported in the
target app. ◀

20 Xunzhu Tang et al.

6 Discussion

6.1 Failures to reproduce recommended bugs

As illustrated previously, some of the reproduction attempts on the bug re-
ports recommended by BugRMSys. lead to failures There are various reasons
that explain such failures without suggesting that the recommended bug is not
relevant. Prior studies have already largely elaborated on this difficulty to re-
produce bugs: In Han’s work [11], an extensive classification of 8 categories
of root causes for failed reproductions is provided: hardware dependency, op-
erating system dependency, component dependency, unavailable source code,
compilation error, installation error, missing step, and lack of symptom. Our
failures causes span across these categories.

6.2 Threats to validity

Our design, implementation and evaluation of BugRMSys carries some threats
to validity. First, when we are building the ground truth, we manually check
whether the reviews are meaningful. Therefore, the ground truth may be bi-
ased by our own experience. Second, BugRMSys is not fully automated, i.e.,
manual effort is still needed when we reproduce from the recommended bug
reports. Consequently, the success rate of reproduction could be dependent on
the developing experience of individual developer.

7 Related Work

Collaborative Experience Sharing: Collaborative programming is com-
mon in the development of open source software. Consequently, similar bugs
can emerge across different projects. Other researches attempted to leverage
this fact to Recommend, Reproduce, and Repair inter-project bugs. For in-
stance, the detection of duplicate bug reports have been studied in localizing
fault of software [46,53]. Specifically, Yang et al. [56] combined information
retrieval technique and word embedding technique to process the detailed in-
formation of bug reports to recommend similar bugs. On the other hand, Tan
et al. [49] use three collaborative sources for bug finding: (1) bugs from the
same programmer across different projects, (2) bugs from manually searching
for bug reports in GitHub repositories, (3) bugs from a bug recommendation
system. Based on these shared experience, they explored the concept of collab-
orative bug finding on improving the teaching of software testing course. In the
experience-based collaborative learning of crowd-sourcing, Mao et al. [30]’s ex-
perimental results show that the generated replicable test scripts from crowd-
based testing can improve the coverage attainment for automated mobile test-
ing.

App Review Driven Collaborative Bug Finding 21

Recommendation of Bug Reports Based on App Reviews: The
importance of app reviews in App vendors have been comprehensively demon-
strated [34,39]. Leaving the app reviews not to be addressed is harmful to
the experience of the users and rating of the app, and further lead to unin-
stallation of the app [12]. To maintain the evolution of the app, researches
started to leverage the app reviews. For instance, Gao et al. [7] developed a
novel approach to automatically generate proper responses to the app reviews
in Google Play. However, this approach mainly try to (1) soothe bad emotion
of users, and (2) collect detailed user experience, but not to discover potential
bugs in advance. Tan et al. [49] designed an approach to find bugs for Android
apps. Their pipeline is to retrieve bugs in other similar apps that may also ex-
ist in the current app. This work validates the feasibility of searching for bugs
in other projects to identify new bugs mentioned by app reviews. Afterwards,
Marlo et al. [10] try to match bug reports with related app reviews to discover
bugs by filling the gap of different languages between app reviews written by
non-technical users and bug reports proposed by professional developers.

8 Conclusion and Future Work

In this paper, we introduce BugRMSys, a tool-supported approach for app
reviews driven collaborative bug finding. Given a target app B, BugRMSys
builds on the development experience of app A to identify bug reports in A
that match app reviews of B. If such bug reports exist, they are considered
as candidate for recommending bugs to the target app B. To that end, Bu-
gRMSys implements an embedding procedure to represent bug reports and
app reviews text, and use cosine similarity to decide on matching similarity
scores. Once bugs are recommend, we experimentally attempt reproduction to
confirm the detection of new bugs in the target app. Our experimental results
on free and open source apps in various categories show that BugRMSys is
effective, scales to a variety of bug types, and does not yield too many irrele-
vant app review matches. Overall, with BugRMSys, we already successfully
reproduced 20 new bugs in 6 apps across 3 categories. Several of these bugs
have been acknowledge by the apps development communities and some have
even already been fixed.

In future, we plan to address the question of automating the reproduction
phase in order to scale the collaborative bug finding approach towards further
increasing its practicality in real-world debugging scenarios.

References

1. Amalfitano, D., Riccio, V., Paiva, A.C., Fasolino, A.R.: Why does the orientation change
mess up my android application? from gui failures to code faults. Software Testing,
Verification and Reliability 28(1), e1654 (2018)

2. Bevan, J., Werner, L., McDowell, C.: Guidelines for the use of pair programming in a
freshman programming class. In: Proceedings 15th Conference on Software Engineering
Education and Training (CSEE&T 2002), pp. 100–107. IEEE (2002)

22 Xunzhu Tang et al.

3. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software verifi-
cation. In: NASA Formal Methods Symposium, pp. 3–11. Springer (2015)

4. Cames, K., II-Grants, A.A.: Recommendation. City (2006)
5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
6. Fan, L., Su, T., Chen, S., Meng, G., Liu, Y., Xu, L., Pu, G., Su, Z.: Large-scale analysis of

framework-specific exceptions in android apps. In: 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pp. 408–419. IEEE (2018)

7. Gao, C., Zeng, J., Xia, X., Lo, D., Lyu, M.R., King, I.: Automating app review response
generation. In: 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 163–175. IEEE (2019)

8. Ghosh, J., Strehl, A.: Similarity-based text clustering: A comparative study. In: Group-
ing Multidimensional Data, pp. 73–97. Springer (2006)

9. Haddi, E., Liu, X., Shi, Y.: The role of text pre-processing in sentiment analysis. Pro-
cedia computer science 17, 26–32 (2013)

10. Haering, M., Stanik, C., Maalej, W.: Automatically matching bug reports with related
app reviews. In: 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), pp. 970–981. IEEE (2021)

11. Han, X., Carroll, D., Yu, T.: Reproducing performance bug reports in server appli-
cations: The researchers’ experiences. Journal of Systems and Software 156, 268–282
(2019)

12. Hassan, S., Tantithamthavorn, C., Bezemer, C.P., Hassan, A.E.: Studying the dialogue
between users and developers of free apps in the google play store. Empirical Software
Engineering 23(3), 1275–1312 (2018)

13. Hu, G., Yuan, X., Tang, Y., Yang, J.: Efficiently, effectively detecting mobile app bugs
with appdoctor. In: Proceedings of the Ninth European Conference on Computer Sys-
tems, pp. 1–15 (2014)

14. Jiang, H., Yang, H., Qin, S., Su, Z., Zhang, J., Yan, J.: Detecting energy bugs in android
apps using static analysis. In: International Conference on Formal Engineering Methods,
pp. 192–208. Springer (2017)

15. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text clas-
sification. arXiv preprint arXiv:1607.01759 (2016)

16. Ko, A.J., Myers, B.A., Chau, D.H.: A linguistic analysis of how people describe software
problems. In: Visual Languages and Human-Centric Computing (VL/HCC’06), pp.
127–134. IEEE (2006)

17. Kowalski, G.: Information retrieval architecture and algorithms. Springer Science &
Business Media (2010)

18. Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a reported
bug. In: 2010 7th IEEE Working Conference on Mining Software Repositories (MSR
2010), pp. 1–10. IEEE (2010)

19. Lee, S., Dolby, J., Ryu, S.: Hybridroid: static analysis framework for android hybrid ap-
plications. In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 250–261. IEEE (2016)

20. Li, H., Fang, C., Wei, Z., Chen, Z.: Cocotest: collaborative crowdsourced testing for
android applications. In: Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pp. 390–393 (2019)

21. Li, H., Zhang, L., Zhang, L., Shen, J.: A user satisfaction analysis approach for software
evolution. In: 2010 IEEE International Conference on Progress in Informatics and
Computing, vol. 2, pp. 1093–1097. IEEE (2010)

22. Liu, Z., Chen, C., Wang, J., Huang, Y., Hu, J., Wang, Q.: Guided bug crush: Assist
manual gui testing of android apps via hint moves. arXiv preprint arXiv:2201.12085
(2022)

23. Long, T., Yoon, I., Memon, A., Porter, A., Sussman, A.: Enabling collaborative testing
across shared software components. In: Proceedings of the 17th international ACM
Sigsoft symposium on Component-based software engineering, pp. 55–64 (2014)

24. Long, T., Yoon, I., Porter, A., Memon, A., Sussman, A.: Coordinated collaborative
testing of shared software components. In: 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), pp. 364–374. IEEE (2016)

App Review Driven Collaborative Bug Finding 23

25. Loper, E., Bird, S.: Nltk: The natural language toolkit. arXiv preprint cs/0205028
(2002)

26. Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification of
app reviews. Requirements Engineering 21(3), 311–331 (2016)

27. Mahmood, T., Ricci, F., Venturini, A.: Improving recommendation effectiveness: Adapt-
ing a dialogue strategy in online travel planning. Information Technology & Tourism
11(4), 285–302 (2009)

28. Man, Y., Gao, C., Lyu, M.R., Jiang, J.: Experience report: Understanding cross-platform
app issues from user reviews. In: 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), pp. 138–149. IEEE (2016)

29. Manning, C., Schutze, H.: Foundations of statistical natural language processing. MIT
press (1999)

30. Mao, K., Harman, M., Jia, Y.: Crowd intelligence enhances automated mobile testing.
In: 2017 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 16–26. IEEE (2017)

31. Martens, D., Maalej, W.: Extracting and analyzing context information in user-support
conversations on twitter. In: 2019 IEEE 27th International Requirements Engineering
Conference (RE), pp. 131–141. IEEE (2019)

32. McIlroy, S., Ali, N., Hassan, A.E.: Fresh apps: an empirical study of frequently-updated
mobile apps in the google play store. Empirical Software Engineering 21(3), 1346–1370
(2016)

33. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781 (2013)

34. Oh, J., Kim, D., Lee, U., Lee, J.G., Song, J.: Facilitating developer-user interactions
with mobile app review digests. In: CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pp. 1809–1814 (2013)

35. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.C.: How
can i improve my app? classifying user reviews for software maintenance and evolu-
tion. In: 2015 IEEE international conference on software maintenance and evolution
(ICSME), pp. 281–290. IEEE (2015)

36. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representa-
tion. In: Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543 (2014)

37. Poerner, N., Waltinger, U., Schütze, H.: E-BERT: Efficient-yet-effective entity em-
beddings for BERT. In: Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 803–818. Association for Computational Linguistics, Online (2020).
DOI 10.18653/v1/2020.findings-emnlp.71. URL https://aclanthology.org/2020.
findings-emnlp.71

38. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

39. Sefferman, A.: Survey on user ratings and reviews. https://www.apptentive.com/
blog/2020/02/04/mobile-app-ratings-and-reviews/ (2015). [Online; accessed
2015]

40. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 (2015)

41. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recommender
systems handbook, pp. 257–297. Springer (2011)

42. Sitikhu, P., Pahi, K., Thapa, P., Shakya, S.: A comparison of semantic similarity meth-
ods for maximum human interpretability. In: 2019 artificial intelligence for transforming
business and society (AITB), vol. 1, pp. 1–4. IEEE (2019)

43. Stanik, C., Haering, M., Maalej, W.: Classifying multilingual user feedback using tradi-
tional machine learning and deep learning. In: 2019 IEEE 27th International Require-
ments Engineering Conference Workshops (REW), pp. 220–226. IEEE (2019)

44. Stanik, C., Montgomery, L., Martens, D., Fucci, D., Maalej, W.: A simple nlp-based
approach to support onboarding and retention in open source communities. In: 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME), pp.
172–182. IEEE (2018)

https://aclanthology.org/2020.findings-emnlp.71
https://aclanthology.org/2020.findings-emnlp.71
https://www.apptentive.com/blog/2020/02/04/mobile-app-ratings-and-reviews/
https://www.apptentive.com/blog/2020/02/04/mobile-app-ratings-and-reviews/

24 Xunzhu Tang et al.

45. Su, T., Fan, L., Chen, S., Liu, Y., Xu, L., Pu, G., Su, Z.: Why my app crashes un-
derstanding and benchmarking framework-specific exceptions of android apps. IEEE
Transactions on Software Engineering (2020)

46. Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval of duplicate bug
reports. In: 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), pp. 253–262. IEEE (2011)

47. Sun, J., Su, T., Li, J., Dong, Z., Pu, G., Xie, T., Su, Z.: Understanding and finding sys-
tem setting-related defects in android apps. In: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 204–215 (2021)

48. Talukder, M.A.I., Shahriar, H., Qian, K., Rahman, M., Ahamed, S., Wu, F., Agu, E.:
Droidpatrol: a static analysis plugin for secure mobile software development. In: 2019
IEEE 43rd annual computer software and applications conference (COMPSAC), vol. 1,
pp. 565–569. IEEE (2019)

49. Tan, S.H., Li, Z.: Collaborative bug finding for android apps. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 1335–1347
(2020)

50. Van Der Veen, V., Bos, H., Rossow, C.: Dynamic analysis of android malware. Internet
& Web Technology Master thesis, VU University Amsterdam (2013)

51. Villarroel, L., Bavota, G., Russo, B., Oliveto, R., Di Penta, M.: Release planning of
mobile apps based on user reviews. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 14–24. IEEE (2016)

52. Vu, P.M., Nguyen, T.T., Pham, H.V., Nguyen, T.T.: Mining user opinions in mobile
app reviews: A keyword-based approach. arXiv preprint arXiv:1505.04657 (2015)

53. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate
bug reports using natural language and execution information. In: Proceedings of the
30th international conference on Software engineering, pp. 461–470 (2008)

54. Wilbur, W.J., Sirotkin, K.: The automatic identification of stop words. Journal of
information science 18(1), 45–55 (1992)

55. Wooditch, A., Johnson, N.J., Solymosi, R., Ariza, J.M., Langton, S.: Getting to know
your data. In: A Beginner’s Guide to Statistics for Criminology and Criminal Justice
Using R, pp. 21–38. Springer (2021)

56. Yang, X., Lo, D., Xia, X., Bao, L., Sun, J.: Combining word embedding with infor-
mation retrieval to recommend similar bug reports. In: 2016 IEEE 27Th international
symposium on software reliability engineering (ISSRE), pp. 127–137. IEEE (2016)

57. Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports using domain
knowledge. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 689–699 (2014)

58. Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical frame-
work. International Journal of Machine Learning and Cybernetics 1(1-4), 43–52 (2010)

59. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate informa-
tion retrieval-based bug localization based on bug reports. In: 2012 34th International
Conference on Software Engineering (ICSE), pp. 14–24. IEEE (2012)

60. Zhou, Y., Tong, Y., Gu, R., Gall, H.: Combining text mining and data mining for bug
report classification. Journal of Software: Evolution and Process 28(3), 150–176 (2016)

61. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., Weiss, C.: What
makes a good bug report? IEEE Transactions on Software Engineering 36(5), 618–643
(2010)

	Introduction
	Preliminary Study
	BugRMSys
	Experimental Design
	Experimental Results
	Discussion
	Related Work
	Conclusion and Future Work

