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Abstract—Commit message generation (CMG) is a challenging
task in automated software engineering that aims to generate nat-
ural language descriptions of code changes for commits. Previous
methods all start from the modified code snippets, outputting
commit messages through template-based, retrieval-based, or
learning-based models. While these methods can summarize what
is modified from the perspective of code, they struggle to provide
reasons for the commit. The correlation between commits and
issues that could be a critical factor for generating rational
commit messages is still unexplored.

In this work, we delve into the correlation between commits
and issues from the perspective of dataset and methodology.
We construct the first dataset anchored on combining corre-
lated commits and issues. The dataset consists of an unlabeled
commit-issue parallel part and a labeled part in which each
example is provided with human-annotated rational information
in the issue. Furthermore, we propose ExGroFi (Extraction,
Grounding, Fine-tuning), a novel paradigm that can introduce
the correlation between commits and issues into the training
phase of models. To evaluate whether it is effective, we perform
comprehensive experiments with various state-of-the-art CMG
models. The results show that compared with the original models,
the performance of ExGroFi-enhanced models is significantly
improved.

Index Terms—Commit Message Generation, Dataset Construc-
tion, Code Representation Learning

I. INTRODUCTION

Commit messages are in the format of natural language for
summarizing and explaining the intention of commits during
the maintenance of software projects [1], [2]. Thus, a well-
written commit message can help code reviewers quickly un-
derstand what the commit is and why the commit is proposed
without any detailed look into the complex codes [3], [4].

However, commits are often complex, making it difficult and
error-prone to summarize with a concise commit message in
manual ways [4], [5], [6], [7]. According to Loyola et al. [6],
16% messages in a widely used dataset CommitGen [8] are
noisy, which means they contain little information about the
commit. In addition, in the situation of increasingly fast-paced
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modern software development, manually writing high-quality
commit messages will also be time-consuming [9].

To simplify the process of writing commit messages, re-
searchers have proposed various techniques for generating
commit messages automatically. Since the original input and
target output of commit message generation (CMG) are in
different modalities, code and natural language, most CMG
approaches formulate the CMG pipeline as a translation task.

Mainstream generation methods can be categorized into
template-based [2], [10], [11], retrieval-based [12], [13],
learning-based [8], [6], [14], [15], [16], [17] and hybrid
models [18], [19], [20]. Template-based techniques start from
parsing the modification of source code and then generate
commit messages with pre-defined rules. Retrieval-based mod-
els calculate a similarity score between the requested input
and other code changes in the training set. Then, they utilize
a ranking algorithm to select the code change with the highest
similarity and use its corresponding commit message as output.
Learning-based models first use a trained encoder to embed
the input code change into semantic space. Then, a decoder
or pointer network will be used to generate output in natural
language space according to the representation of code change
provided by the encoder. Hybrid models combine the charac-
teristics of learning-based and retrieval-based methods, such as
RACE [19], which proposed a retrieval-augmented mechanism
that can be leveraged in the generation phase. For learning-
based and hybrid approaches, the process of embedding may
also need some additional parsed structure information such
as abstract syntax tree [18]. Additionally, with the devel-
opment of pre-trained language models in natural language
processing [21], [22], more and more pre-trained code change
representation methods have emerged [23], [24], [25]. This
also significantly improves the quality of embedding and
makes excellent progress in CMG tasks.

Although existing approaches show promising performance,
they still tend to generate meaningless and irrational commit
messages [20]. An apparent restriction is that all these tech-
niques only receive input information directly or indirectly
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Commit 

Issue

Sha: 

Message: Fix evaluation of MATCH expressions with
eval()

319c868

Number:  7160

Title: 
Incorrect MATCH result with if/eval on
a datetime value

Body: 

Except for the first query (without any
if/eval), all subsequent queries
incorrectly return no results. 
In the repro section, all MATCH queries
are equivalent and should produce
identical results: returning one row
with all of the created vertices in it.

Event: <developer> closed this as completed
in 319c868 on <date>.

Fig. 1: Correlation between commit and issue.

from the code itself. While the code, as the object of modifi-
cation, can usually only reflect the result of the commit rather
than the reason. This makes it difficult for existing methods
to generate good commit messages that contain both summary
(i.e., What) and motivation (i.e., Why) of the change [4].
In fact, a lot of commit messages are highly related to the
content of some issues or bug reports, which usually describes
the detailed reason for the commit [26], [27]. As shown
in Figure 1: By reading the given issue, a developer can
understand that there is a bug to be fixed because of “the
incorrect result of MATCH with eval”. The title of the issue
summarizes the problem in a few words, and the body of the
issue elaborates on the problem in detail by describing actual
behaviors and expected behaviors. In the commit message, the
keywords to the issue (“MATCH” and “eval”) reemerge. Upon
resolution of the issue, an event established a correlation be-
tween the commit and the issue. None of the existing research
on CMG tasks has focused on this correlation between commit
and issue. Therefore, exploring this correlation in-depth and
leveraging it to improve the performance of CMG approaches
has become the primary motivation of this paper.

In this work, we explored the correlation between commits
and issues from the perspective of data and approach. First,
to fill the gap in the research community on this topic, we
collect a large commit-issue parallel dataset to understand
what kind of rational information issues can provide. While
constructing the dataset, we also consider identifying fine-
grained knowledge in the data. Therefore, the whole dataset
consists of two parts. One part is unlabeled, and the other
is labeled in which each example is provided with human-
annotated rational information in the issue. Further, from
the perspective of approach, we propose a novel training
paradigm ExGroFi (Extration, Grounding, Fine-tuning) that
can improve the performance of pre-trained CMG models by
introducing the correlation between commit and issue into
the training phase. The paradigm consists of three pipelined

stages. The first stage aims to extract fine-grained knowledge
from issues. Then the second stage leverages the extracted
knowledge to better represent the code change into semantic
space. In the last stage, a fine-tuning task is performed to
generate commit messages.

To evaluate whether ExGroFi is effective for CMG task,
we perform an extensive evaluation with the collected dataset.
The overall experiment result shows that the performance of
state-of-the-art CMG models can be significantly improved by
introducing the correlation between commit and issue using
ExGroFi. Further, the result of two fine-grained experiments
can prove the effectiveness of each stage of ExGroFi. In
addition, considering the incompleteness of automatic metrics,
we also perform a human evaluation from four aspects: ra-
tionality, comprehensiveness, conciseness, and expressiveness.
Results show that ExGroFi can improve the rationality of
the generated commit messages while maintaining the level
of other indicators.

In summary, the main contributions of this paper are:
• A high-quality commit-issue parallel dataset, which is the

first dataset that can be used to explore the correlation
between commit and issue.

• A novel paradigm ExGroFi for commit message gener-
ation, which consists of an extraction stage, a grounding
stage, and a fine-tuning stage. The paradigm introduces
the extracted rational information from issues to the
training phase of commit message generation models.

• A comprehensive evaluation of ExGroFi, including a
comparison study, a verification of the performance of
each stage, and a human evaluation. All results suggest
the effectiveness of our paradigm from different perspec-
tives.

The remainder of this paper is organized as follows. Sec. II
elaborates on the background of this work. Sec. III introduces
the collected commit-issue parallel dataset. Sec. IV explains in
detail the proposed ExGroFi paradigm. Sec. V and Sec. VI
present our experimental configuration and analyze the results.
Sec. VII discusses the threat of validity and limitations of
our work. Sec. VIII lists some related works. Sec. IX gives a
conclusion to this paper.

II. BACKGROUND

Issues are a great way to keep track of what needs to be
done and what has been done in a project [28]. It can always
guide developers in writing concise and descriptive commit
messages. Therefore, commits and issues are always highly
correlated [29], [30], [31]. However, none of the existing
automatic commit message generation approaches leveraged
this correlation. In this section, we further analyze the reasons
for this situation and lead to the motivation for our work.

A. Correlation between Commits and Issues

Both issues and commits play a crucial role in collaborative
software development. An issue refers to a bug report, a feature
suggestion, or any problem that needs to be addressed for a
project. It can be identified by any developer and user of the
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software, and is typically tracked in a management tool like
Jira [32], Trello [33], or GitHub [34]. A commit is a specific
change made to the source code. It includes a brief message
that describes the changes made, along with any relevant
metadata such as the author, timestamp, and the specific files
and lines of code that were modified. Issues often drive the
creation of commits [4]. When developers start working on an
issue, they will make one or more commits to the codebase
to resolve the issue.

In the scenario of writing a commit message, the developer
will briefly describe the content of the modification according
to the code change and attach an explanation by referencing
an issue. One common way to relate a commit message to an
issue is to reference the issue number or link in the message
explicitly [35], [36]. For example, the commit message might
include a line like “Refactor code related to issue 1234” or
“Fixes issue #1234”. In other cases, the developer may also di-
rectly extract some sentences from the issue as the reason [37],
[38]. Therefore, there should be a strong correlation between
the text of issues and commit messages. Tian et al. [29] has
validated the existence of this correlation from the perspective
of semantic similarity. They used BERT [39] to embed text
in the semantic space. Moreover, the results show that the
original issue (bug report) and associated commit message
pairs are much more similar than the randomly selected ones.
Consequently, it is easy to imagine that issues will contain
much rational information for writing commit messages.

B. Lack of Data and Research

Although the correlation between commits and issues is
obvious, there is still no research that exploits this kind of
knowledge to solve the CMG task. This situation is mainly
due to the difficulty in obtaining high-quality issue data.
As the open-source software (OSS) community continues to
thrive [27], [40] , an increasing number of OSS projects
are turning to public issue-tracking systems (ITS), such as
Jira [32] and the issue-tracking functionality of Github [41] to
manage issues. This enables timely feedback on problems in
the project but also results in a diverse and inconsistent quality
of issue data due to the following barriers. (1) Technical
knowledge. Developers with different expertise levels may
have different abilities to describe complex issues [42], [43].
This can lead to some developers writing more complex and
accurate issues, while others may have difficulty communi-
cating the full extent of the problem or suggestion being
reported. (2) Motivation. Developers with different motivations
may have different levels of interest in contributing to the
project and writing high-quality issues [44]. This can lead
to some developers carefully research and report well-written
issues, while others may not be as invested in the project
and may write lower-quality issues. (3) Communication skills.
Developers with different communication skills may have dif-
ferent abilities to clearly and concisely describe an issue [45].
This can lead to some developers writing more organized and
easy-to-understand issues, while others may have difficulty
expressing themselves in a way that is clear and concise.

Therefore, the current situation is that although a large
amount of open-source issue data exists, there is no high-
quality and sufficiently large dataset that provides commits
with related issues, nor is there a sophisticated paradigm that
can effectively leverage the correlation between commit and
issue. This leads to the motivation for our work: construct a
high-quality commit-issue parallel dataset and explore meth-
ods to efficiently use commit-issue correlation for commit
message generation.

III. THE DATASET

To investigate the significance of the commit-issue correla-
tion for the CMG task, we construct a commit-issue parallel
dataset. This dataset fills a gap in the academic community
in this area and may provide a reasonable basis for future
research. It provides both raw unlabeled corpus and labeled
data that can guide models to learn from external knowledge.
In this section, we first introduce the construction process of
the dataset. Then we explain how we define the information
that should be labeled and the annotation details. Finally, some
useful statistics and an example are presented.

A. Construction

1) Collection: Considering the ease of access and volume
of data, we collect data from Github [34], a web-based
platform for version control and collaboration. GitHub not
only has a large number of high-quality open-source projects,
but also has a comprehensive issue-tracking functionality [41].
We only focus on projects developed in Java because it is
one of the most widely used programming languages in the
industry and is the most studied in academic research [9]. We
retrieve data from the top 1,000 Java repositories according to
the number of stars using PyGithub [46], the Python package
of Github REST API [47].

Our purpose is to construct a dataset that provides linked
commit-issue pairs in real software projects. However, the
original GitHub REST API does not provide an interface that
can directly fetch this kind of data. Le et al. [48] proposed
a discriminative model to predict if a link exists between a
commit message and a bug report. However, this model was
trained on generated commit messages and bug reports, which
means it can not ensure the objectivity and truthfulness of data.
After an in-depth examination of the GitHub REST API, we
find that it provides a class of IssueEvent object that can help
us reconstruct the needed information. A Github IssueEvent
refers to an activity related to an issue. It occurs when an issue
is opened, closed, edited, or referenced. For each project issue,
we filter out all the commits that reference it by specifying
the type of IssueEvent as “referenced”. At the same time, we
maintain a mapping from commit to a list of issues, and every
time we get a commit that references an issue, we append that
issue to the corresponding list in the mapping. In this way, we
successfully collect all the primary data we needed, and we
keep the following information for further processing:

• Commit message: The whole commit message of the
commit.
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• Issues: A list of issues that are referenced by the commit.
For each issue, its title (a summary of the issue in a few
words) and its body (a detailed description of the issue)
are provided.

• Files: A list of files that are modified in the commit. For
each file, we keep its relative path in the project (contains
its filename) and code change (formatted as the output of
the git diff command).

2) Text processing: The text data obtained from the GitHub
REST API usually contains a lot of noise [4], [9], [12].
This makes it challenging to extract valuable insights from
them without proper text-processing techniques. In our dataset,
there are three types of text data: commit message, issue
title, and issue body. Commit messages and issue titles are
relatively easy to process because they are usually short. While
for issue bodies, the situation is more complex. As free-
form content, issue bodies can include plain text, markdown,
and images. It should provide all the necessary information
to understand and reproduce the issue, including steps to
reproduce, expected behavior, actual behavior, error messages,
example code snippets, and other relevant information [28]. In
addition, as mentioned in Sec. II-B, different proposers have
different writing habits. Therefore, the quality of issue bodies
varies. In order to obtain a more generalized knowledge from
issues, we need to normalize their content. To do this, we
respectively replace URLs and code snippets in issue bodies
with special tokens “[URL]” and “[CODE]”. Moreover, for
issue numbers mentioned in commit messages, we replaced
them with the token “[ISSUE NUMBER]”.

3) Filtering: Not every example that we obtain can be
deposited into the dataset. We also perform further filtering on
the processed text data. According to Liu et al. [12], there will
be some commit messages that are automatically generated
by bots or trivial that contain little and redundant information.
Following their work, we also remove the data containing these
commit messages and only keep English data. In addition,
considering the length limitation of the existing pre-trained
models on the input token sequence, we also filtered the data
based on the length of tokenized sequences. Data containing
fields that exceed the length limit (1024 tokens) are also
excluded.

B. Annotation for Issues

1) Definition: As mentioned in Sec. II-B, the writing style
and text length of issues proposed by different people vary
greatly. This also makes it challenging to explore the cor-
relation between commits and issues. Even if we carefully
process the text and eliminate the content that does not
contain semantic information as much as possible, it is still
difficult to directly use it to provide valuable information
for models. Therefore, we try to manually annotate the fine-
grained information in issues such that it can help models
to learn more knowledge and better embed code change in
semantic space. Observing a large amount of data, we define
two types of fine-grained information as follows.

a) Issue type: Issues can be categorized into different
types based on motivation [49]. GitHub issues themselves
do not have predefined types or topics. However, project
maintainers can use a flexible labeling system to categorize
issues based on their nature, priority, or other relevant criteria.
By applying labels, maintainers can create a more organized
issue-tracking system that is easier to navigate and manage.
According to labels, we summarize three commonly used issue
types:

• Bug report: A bug report is an issue that describes
unexpected behavior or an error in the code. It needs to
be fixed to ensure the proper functioning of the software.

• Feature request: A feature request is a suggestion or
proposal for a new feature or functionality that users
would like to see in the software. The way users use
the software will change because of the commits related
to it.

• Enhancement: An enhancement is a suggestion to im-
prove an existing feature or functionality of the software.
Unlike feature requests, it usually does not result in
a change in the way users use the software. Common
enhancement includes performance optimization, compat-
ibility optimization, etc.
b) State information: Issues always contain some de-

scriptive content of the current situation and expected re-
sults [28], and these descriptions are the most critical content
to tell developers why the modifications should be done.
We define this kind of knowledge as actual/expected state
information. By analyzing the actual state and comparing it
with the expected state, developers can make better changes
to the code. Since the objective of a commit is to update the
current codebase to meet expectations, its commit message
should be highly related to the state information we defined.
From the perspective of representation, the actual/expected
state can also be regarded as the projection of the code
before/after the commit in semantic space. This means that
the text containing actual/expected states extracted from issues
could be used as a supervised objective for code change
representation learning.

2) Annotation: According to our definition of fine-grained
information in issues, we perform an annotation of the col-
lected data. We use Label Studio [50] as the annotation
platform. The commit message of a commit, together with the
title and body of all issues related to this commit, are shown on
the labeling page of each example. Five well-trained annotators
were asked to label the type of each issue and to extract actual
state expected state information from it. We finally obtain 960
labeled examples.

C. Stratification

The whole dataset has two parts:
• The base part consists of all unlabeled commit-issue data.

This part can be regarded as a CMG dataset, but for each
commit, all related issues are attached.

• The fine part consists of all labelled commit-issue data.
Each of the data contains not only the related issue list
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Fig. 2: An example of the dataset

but also the type and the actual/expected state information
of each issue.

For the base part, we randomly stratify it into training,
validation and test split with a ratio of 8:1:1. The base part
contains 19262 data entries in total, and the fine part comprises
960 data entries.

D. Example

An example of the dataset is shown in Figure 2. For each
commit data in the base part of the dataset, we provide its
commit message, a list of issues related to the commit, and
a list of all files that have been modified in the commit.
In the issue list, the title and body of each issue are given
as strings. In the file list, the filename and code change for
each file are also provided. For the fine part, in addition to
containing all the information in the base part, it also includes
annotation for each issue in the issue list. Specifically, we
provide the type and the state information for each issue.
The latter is represented by four key-value pairs: “location”
indicates whether the information resides in the title or body;
“state type” signifies whether the information is an actual state
or an expected state; “start” and “end” respectively denote the
offset of the starting and ending characters within the string.

IV. THE ExGroFi PARADIGM

In this section, we will introduce the proposed ExGroFi
(Extraction, Grounding, Fine-tuning) paradigm, which exploits
the correlation between commits and issues to generate more
reasonable commit messages. The overview of ExGroFi is
illustrated in Figure 3. It is noteworthy that ExGroFi is not a
simple model that takes code changes as input and generates
commit messages as output. Instead, it is a pipeline that inte-
grates the fine-grained information carried by issues into a pre-
trained CMG model to generate improved commit messages.
The entire paradigm consists of three stages: extraction stage,
grounding stage, and fine-tuning stage. During the first stage,
we extract state information (defined in Sec. III-B1b) from
existing issues. Then, in the grounding stage, we utilize the

extracted information as target output and employ a sequence-
to-sequence task to train a pre-trained CMG model F to
obtain a refined model Fgrounded. Finally, in the fine-tuning
stage, Fgrounded is trained to generate commit messages
using code change. F can be any existing learning-based or
hybrid CMG model which uses sequentialized code change as
input. After being trained with ExGroFi, F is transformed
into Fgrounded, which incorporates commit-issue correlation
and possesses the ability to generate more rational commit
messages. We then describe each stage of ExGroFi in detail.

A. Extraction Stage

The purpose of this stage is to extract state information
(defined in III-B1b) from a large corpus of issues. Through
practical experimentation, we find that including the type
of issue as a feature in the input enhances the extraction
performance. Consequently, we design a pipeline structure
within this stage: for each issue to be processed, we first
employ a classifier to categorize its type, then input both
the classification result and the issue text into a sequence
labeling model [51] to extract the state information. The
internal structure of this stage is illustrated in Figure 4.

1) Issue Type Classification: For a given issue token list
T = {t1, t2, ..., tn} (n is the length of the se-
quence), we employ a pre-trained language model PLMcls

to acquire the distributed representation of each token
H = {h1, h2, ..., hn}. Subsequently, the representation
vector of the first token h1 is fed into the classification head
MLPcls [52], a linear layer with a softmax activation function,
to obtain a probability distribution across all categories. The
category with the highest probability is identified as the type of
input issue. Upon acquiring the type of the issue, we convey
this information to the downstream model by concatenating
a special token ttype at the beginning of the input sequence.
Specifically, the three types (bug report, feature request, and
enhancement) are respectively represented by “[BR]”, “[FR]”,
and “[EN]”.

2) State Information Extraction: We model state infor-
mation extraction as a sequence labeling (also known as
sequence tagging) task [51]. Sequence labeling is commonly
employed to extract meaningful substrings from a lengthy
character string, such as Named Entity Recognition (NER)
task in natural language processing [53]. In the context of
state information extraction, assuming that the AS (actual
state) and ES (expected state) information is text within the
issue, employing a sequence labeling approach for extraction is
both reasonable and straightforward to implement. Under this
modeling strategy, the model classifies each input token by
assigning a tag. Different tags represent the positions of their
corresponding tokens relative to the content to be extracted.
We utilize the BIO labeling scheme [54], which works as
follows:

• B (begin): This tag is assigned to the first token of
the content to be extracted, and it is followed by the
content type, e.g., B-AS, for the beginning of actual state
information.
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• I (inside): This tag is assigned to the tokens within the
target content, also followed by the content type, e.g.,
I-ES for tokens inside expected state information.

• O (outside): This tag is assigned to tokens that are not
part of any targeted content.

Similar to the previous step, the state information extraction
model comprises a pre-trained language model PLMext and
a linear classification head MLPext. The token sequence
integrated with type information T

′
= {t′type, t

′

1, t
′

2, ..., t
′

n}
is fed into the model to obtain hidden layer vectors in the
semantic space H

′
= {h′

type, h
′

1, h
′

2, ..., h
′

n}. Subsequently,
MLPext performs classification on the hidden vectors at
each position, yielding an output sequence composed of tags.
Finally, the target information contained within the text can be
decoded based on the schema. For each input sequence, the
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Fig. 4: Extraction stage.

sum of the cross-entropy for every token is considered as the
final loss.

B. Grounding Stage

In the context of deep learning, grounding [55] refers to con-
necting abstract representations learned by a neural network
to real-world knowledge. In this paper, we draw inspiration
from this terminology and refer to the process of enhancing
the model’s capacity to represent code change as grounding.
During the grounding stage, we aim to embed the code change
into a representation vector that more accurately reflects its
semantics. According to the definition of state information
in Sec. III-B1, issues can offer descriptions of the state that
the code should exhibit before and after the change. In other
words, the state information can be regarded as a natural
language summary of the code change. Therefore, it can serve
as a supervisory objective for code change representation
learning.

The grounding stage can be initialized by any pre-trained
commit message generation model F , which takes code diff
as input. Given a sequentialized code diff token sequence, the
objective of this stage is to obtain a grounded model Fgrounded

that can align input code change with words possessing the
same semantic information. By concatenating state informa-
tion of related issues as the target language, we can model
the training process of F as a sequence-to-sequence task [56].
Since the model outputs a probability distribution over the
vocabulary on all translation steps, the summed cross-entropy
loss is also used as the objective function. After grounding,
we acquire a model Fgrounded, which possess the knowledge
learned from the correlation between commits and issues.

C. Fine-tuning Stage

The fine-tuning stage is relatively simple: Given an input
sequence of code change, Fgrounded is fine-tuned to generate
a commit message in this stage. Note that the structure
of Fgrounded and F are the same, but the parameters are
different.

V. EXPERIMENTAL SETUP

A. Research Question

• RQ1: Overall effectiveness. To what extent can
ExGroFi enhance the performance of existing CMG
models?

• RQ2: Extraction performance. How effective does the
first stage of ExGroFi extract state information from
issues?
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• RQ3: Contribution of grounding stage. Do models
really learn useful correlation knowledge through the
grounding stage?

• RQ4: Human evaluation. How do ExGroFi-enhanced
models perform from the perspective of human evalua-
tion?

B. Data

Since there was no commit-issue parallel corpus before, we
use the dataset described in Section III for all experiments. The
annotated issues in the fine part are used to evaluate models
in the extraction stage. The base part is used to evaluate the
grounding stage and the generation stage.

C. Enhanced Models

We use ExGroFi to enhance six state-of-the-art models as
follows.

• Encoder-only models only provide contextualized code
diff representation by a pre-trained encoder. We consider
three encoder-only pre-trained models CodeBERT [23],
CodeBERTa [57], and UniXcoder [58].

• Encoder-decoder models possess both pre-trained en-
coder for representation and decoder for generation. We
consider two encoder-decoder models CodeTrans [24]
and CodeT5 [25]. We experimented with both the
SMALL and BASE versions of these two models.

• Hybrid models use both retrieval-based and learning-
based techniques. We select RACE [19], which is a
retrieval-augmented neural commit message generation
model.

Note that models using the ASTs of the code (such as
FIRA [17] and ATOM [18]) do not participate in our eval-
uation. This is because the code diff fragments provided in
the dataset we used are unparseable.

D. Implementation

a) Models: We use the official parameters downloaded
from Hugging Face [59] to initialize our models. For encoder-
only and encoder-decoder models, we directly use the down-
loaded pre-trained checkpoint. But encoder-only models do
not have decoders for generation. So we randomly initialize
a Transformer [60] decoder for encoder-only models. The
hyperparameters of these random decoders are set according
to the configuration of the corresponding encoder model. For
RACE, we initialized it with the weight of CodeT5-base as
reported in its original paper. In addition, for the pre-trained
language model in the extraction stage, we use CodeBERT.

b) Tokenizers: As mentioned in Sec. IV-A1, we add three
special tokens “[BR]”, “[FR]”, and “[EN]” for the tokenizer
of extraction stage to indicate the type of issue type.

c) Environments: The experiments are performed on an
NVIDIA DGX Station with Intel Xeon CPU E5-2698 v4 @
2.2 GHz, running Ubuntu 20.04.4 LTS. The models are trained
on one 32G GPU of NVIDIA TESLA V100.

E. Automatic Metrics

1) Commit Message Generation: Numerous automated
metrics have been employed for the evaluation of the CMG
task. However, each evaluation metric possesses inherent lim-
itations. Consequently, in order to assess ExGroFi from
diverse perspectives, we have selected the following four
distinct automated metrics for our analysis.

• BLEU [61] measures the precision of n-grams (sequences
of n words) in the generated text compared to the refer-
ence texts. It calculates the modified n-gram precision
and applies a brevity penalty to avoid favoring shorter
sentences.

• ROUGE-L [62] is a metric that evaluates the quality
of summaries by measuring the longest common subse-
quence (LCS) [63] between the generated text and the
reference texts. It is less sensitive to the exact word
order than BLEU but provides a more recall-oriented
evaluation.

• METEOR [64] calculates the harmonic mean of unigram
precision and recall between the generated text and the
reference text, considering exact matches, synonyms, and
stemmed forms of words.

• CIDEr [65] computes the Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) weighting for each n-gram
to emphasize the importance of informative and rare n-
grams. Therefore, it is more effective in capturing the
relevance of specific details.

2) State Information Extraction: Drawing upon the infor-
mation extraction domain [66], we opted to use precision,
recall, and F1-score (the harmonic mean of precision and
recall ) to evaluate the performance of the extraction stage.
During the actual training of the state information extractor,
we utilized the fine part of the dataset, which was randomly
divided into an 8:1:1 ratio for the training, validation, and
testing sets. A micro-F1 score calculated over the whole test
set is also presented. It is essential to note that the information
we aim to extract is typically longer strings, so requiring the
model’s output to be identical to the golden answer might be
excessively stringent. Therefore, when calculating the metrics,
we employ a fuzzification strategy to assess whether the
extracted content by the model meets the requirements. Specif-
ically, we first compute the number of matching character
between the model output string and the golden string. Then
we calculate a similarity score by dividing the number of
matching characters by the average length of the strings. If
the score exceeds a predetermined threshold τ (we set the
value as 0.8), we consider the two strings to match, indicating
that the model has extracted the correct answer.

VI. RESULTS AND ANALYSIS

In this section, we present the overall effectiveness of
ExGroFi-enhanced models for CMG (RQ1) in Sec. VI-A,
the performance of the extraction stage (RQ2) in Sec. VI-B,
the contribution of grounding stage (RQ3) in Sec. VI-C and
human evaluation (RQ4) in Sec. VI-D.

7



TABLE I: Generation performance for ExGroFi-enhanced commit message generation models.

BLEU ROUGE-L METEOR CIDEr
Model Ori. Enh. Imp. Ori. Enh. Imp. Ori. Enh. Imp. Ori. Enh. Imp.

CodeBERT [23] 8.81 9.09 3% 15.85 16.05 1% 4.75 5.0 5% 0.09 0.11 22%
CodeBERTa [57] 8.43 8.50 1% 14.86 15.66 5% 4.92 5.12 4% 0.09 0.11 22%
unixcoder [58] 9.46 9.54 1% 17.04 17.59 3% 5.57 6.18 11% 0.14 0.16 14%

encoder-only average 8.9 9.04 2% 15.92 16.43 3% 5.08 5.43 7% 0.11 0.13 18%

CodeTrans-small [24] 11.08 12.66 14% 18.62 20.84 12% 7.98 9.07 14% 0.3 0.46 53%
CodeTrans-base [24] 19.27 20.37 6% 27.34 28.53 4% 16.37 18.31 12% 1.0 1.08 8%
CodeT5-small [25] 11.40 12.59 10% 20.70 22.68 10% 8.86 10.02 13% 0.36 0.49 37%
CodeT5-base [25] 19.96 20.94 5% 30.07 31.46 5% 16.99 18.39 8% 1.04 1.11 7%
RACE [19] 21.06 22.47 7% 30.17 36.09 20% 17.23 18.64 8% 1.14 1.51 32%

encoder-decoder + hybrid
average 16.55 17.81 8% 25.38 27.92 10% 13.486 14.886 10% 0.768 0.93 21%

“Ori.” means Original; “Enh. ” is Enhanced; “Imp.” indicates Improvement.

A. RQ1: Overall Effectiveness

The overall effectiveness of ExGroFi is presented in
Table I. It can be observed that the generation performance of
each model is improved after being trained using ExGroFi.
Among them, the overall generation performance of encoder-
only models is relatively inferior, which can be attributed
to their decoders being initialized randomly. In contrast, the
generation performance of pre-trained encoder-decoder models
is considerably superior. Regardless of whether the mod-
els are initialized entirely with pre-trained parameters, those
trained using ExGroFi consistently outperform models that
solely rely on fine-tuning. This demonstrates the effectiveness
of ExGroFi in the CMG task. Specifically, for encoder-
only models, ExGroFi can increase the average scores of
BLEU, ROUGE, METEOR, and CIDER by 2%, 3%, 7%,
and 18%, respectively. For encoder-decoder models, these
four metrics can be improved by 8%, 10%, 10%, and 21%,
respectively. The most notable improvement is observed in
CIDEr, indicating that models trained with ExGroFi are
more likely to generate outputs that capture specific details
or content deemed significant by humans. This is crucial in
the scenario of CMG task [4], as different commit messages
often contain vocabulary which is unique to specific code
repositories, such as particular class names and variable names.
In addition, being limited by input length, original models
can not fully cover all information in the code change. But
with the aid of ExGroFi, models can obtain knowledge from
issues, significantly reducing the loss of information when
representing code change and consequently producing more
rational commit messages.

✍ Answer to RQ-1: ▶ ExGroFi improves generation
performance in the CMG task for encoder-only, encoder-
decoder and hybird models, with encoder-decoder models
showing superior results. Notable improvements are ob-
served in CIDEr, indicating better capture of specific human-
relevant details. ExGroFi also aids in reducing information
loss, enabling more rational commit messages. ◀

B. RQ2: Extraction Performance

In the extraction stage of ExGroFi, a learning-based model
is employed to extract state information, necessitating an
evaluation of its performance. During the training phase of
the state information extractor, we utilized the fine part of
the dataset, which was randomly divided into an 8:1:1 ratio
for the training, validation, and testing sets. In Table II, we
present the precision (P), recall (R), and F1-score for the two
categories of state information, as well as the micro-F1 for the
entire test set. The middle column and the rightmost column
of the table represent the extraction performance without
and with the utilization of category information, respectively.
It can be observed that the model’s extraction performance
exhibits a significant improvement when incorporating cat-
egory information. Furthermore, the model demonstrates a
better extraction capability for expected state information (F1-
score 81.08%) compared to actual state information (F1-score
61.68%). This is primarily due to the fact that expected state is
often proposed by more experienced developers or users [28],
resulting in higher data consistency than the actual state,
which consequently makes it easier for the model to extract.
However, the overall micro-F1 score reaches 71.56%. Based
on the experience in the information extraction domain [66],
this performance is sufficient to meet the demands of state
information extraction for data in our scenario.

Figure 5 provides an example of the extracted state infor-
mation from a real issue. In the figure, we show both the
title and the body of this issue. Actual state information is

TABLE II: State information extraction performance

Approach codebert + issue type

Actual
State

P 56.90 58.93
R 63.46 64.71
F1 60.00 61.68

Expected
State

P 80.77 84.91
R 72.41 77.59
F1 76.36 81.08

Micro-F1 68.18 71.56
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indicated by solid underlines, while expected state information
is indicated by dashed underlines. The former describes the
actual behavior which is unexpected, and the latter suggests
the expected behavior.

✍ Answer to RQ-2: ▶ In the extraction stage of ExGroFi,
incorporating category information significantly improves
state information extraction performance, with better results
for expected state (F1-score 81.08%) than actual state (F1-
score 61.68%). The overall micro-F1 score reaches 71.56%,
sufficient to meet state information extraction demands for
the scenario. ◀

C. RQ3: Contribution of Grounding Stage

To validate whether the grounding stage of ExGroFi
can integrate knowledge related to commits from issues into
models, we conduct a comparative experiment. Firstly, we
extract the encoders from the original CodeT5-base and the
ExGroFi-enhanced CodeT5-base. Then, we utilize these two
encoders to individually embed the code changes and commit
messages of each data example in the test set of our dataset,
resulting in two pairs of vectors. We also standardize these
vector values to eliminate the influence of dimension. Then
we compute the Euclidean distance between the vectors in
each pair, representing the distance in the semantic space. A
smaller distance implies a higher semantic similarity between
the obtained code change representations and commit message
representations. Figure 6 presents the distribution for pairs
embedded by encoders before and after grounding. The results
show that the representations provided by the grounded en-
coder are more similar. The Mann-Whitny-Wilcoxon test [67]
(p-value: 1.9e-55) further validates the significance of the
difference before and after grounding. This indicates that
ExGroFi enables the model to more accurately align code

expected stateactual state

Figure 5: Example of extracted state information from issue

TITLE
Sequence used multiple times in single transaction 
block is not incremented

BODY
OrientDB Version: 2.2.22
Java Version: 1.8.0_92
OS: Windows 7
If run in transaction block, sequence is not 
updated, and all vertices get the same "uniqueID" 
and due to an index an exception is thrown:
[CODE].
A sequence used as a default value in multiple 
vertex classes (as uniqueID) in same transaction 
block should increment by one within each created 
vertex.
Steps to reproduce:
...

Fig. 5: Example of extracted state information.

Fig. 6: Euclidien distance between embedding of code change
and commit message before and after grounding.

changes within the semantic space, thereby generating more
reasonable commit messages.

✍ Answer to RQ-3: ▶ The grounding stage of ExGroFi
effectively integrates commit-related knowledge from issues.
A comparative experiment shows significantly smaller Eu-
clidean distances between code change and commit message
representations in ExGroFi-enhanced models, indicating
better semantic alignment and more reasonable commit
message generation. ◀

D. RQ4: Human Evaluation

While automatic metrics can provide valuable insights, the
lack of semantic understanding still makes them insufficient
for a comprehensive evaluation. Therefore, following Shi et
al. [19], we conduct a human evaluation to further study
the quality of commit messages generated by ExGroFi-
enhanced models. We randomly select 50 data samples from
the test set of the base part and design a questionnaire for
evaluation. For each sampled data, the questionnaire includes
the code change, the ground truth commit message, the
commit message generated by the original model and the
commit message generated by the ExGroFi-enhanced model.
We invited four experienced developers to conduct human
evaluation, including two software engineers with over two
years of work experience and two graduate students with long-
term internship experience. Each evaluator needs to assess the
quality of the generated commit messages from the following
four aspects.:

• Rationality: Whether it provides a logical explanation for
the changes, addressing the “why” behind the commit.

• Comprehensiveness: Whether it covers all important de-
tails and provides a complete picture of the modifications
made, addressing the “what” behind the commit.

• Conciseness: Whether it conveys information succinctly,
ensuring readability and quick comprehension.

• Expressiveness: Whether its content is grammatically
correct and fluent.

For each aspect, the developer must indicate whether the
original or the enhanced model’s generated result is better. If
the enhanced model is better, they assign “Win”; otherwise,
assign “Lose”. If they think the difference between the two is
not obvious, they should assign a “Tie” label. To mitigate bias,
each developer fills in the questionnaire independently and the
agreement among them is measured by Fleiss’ kappa [68].
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TABLE III: Result of human evaluation.

Indicator Win (N-%) Lose (N-%) Tie (N-%) Kappa

Rat. 35 (70%) 10 (20%) 5 (10%) 0.70
Comp. 25 (50%) 14 (28%) 11 (22%) 0.67
Conc. 21 (42%) 20 (40%) 9 (18%) 0.65
Expr. 17 (34%) 17 (34%) 16 (32%) 0.66

N is short for number; % indicates percentage.
Rat. means Rationality. Comp. is Comprehensiveness.
Conc. is Conciseness. Expr. represents Expressiveness.

Table III reports the results of human evaluation. The values
of kappa are all above 0.6, indicating substantial agreement
among the four developers. According to the results, we
notice that ExGroFi significantly improves upon rationality
while achieving comparable performance on comprehensive-
ness, conciseness and expressiveness, which substantiates that
our proposed paradigm indeed enables models to learn rational
information from the correlation between commits and issues.

After human evaluation, we also select three examples that
intuitively demonstrate the enhancement of the model by the
tool, as shown in Table IV. Each example not only provides
the generated results of the original model and the ExGroFi-
enhanced model, but also provides partial text from the issue
related to that commit. It can be seen that, the commit message
generated by the original model only provides a rough de-
scription of the modifications. In comparison, the ExGroFi-
enhanced model’s output includes specific descriptions of the
modified objects (e.g.,“handler in Mono.subscribe()” in Exam-
ple 2 and“when starting process instance” in Example 3) as
well as the reasons for the modifications (e.g.,“to reclaim the
memory” in Example 1 and “Fix bug” in Example 3). These
examples further demonstrate that ExGroFi, by introducing
correlation knowledge between commits and issues, enables
models to have the ability to generate more rational results.

✍ Answer to RQ-4: ▶ Human evaluation of commit
messages generated by ExGroFi-enhanced models shows
significant improvement in rationality while maintaining
comparable performance in comprehensiveness, concise-
ness, and expressiveness. This confirms that ExGroFi ef-
fectively enables models to learn rational information from
the correlation between commits and issues. ◀

VII. DISCUSSION

We discuss the threats to validity and enumerate a few
limitations of our study.

A. Threats to Validity
The internal threat to validity lies in the implementation of

approaches and the setting of hyperparameters. To reduce this
threat, we directly reuse the open-source implementation of
RACE [19] and public checkpoints of all pre-trained models on
Hugging Face [59]. To ensure the optimal hyperparameters for
each model, we conducted numerous iterative experiments and
tested models with various decoding parameter configurations
to generate the best possible results.

The external threat to validity lies in the source of data that
we used to construct the dataset. To mitigate this threat, we
employed the official GitHub REST API [47] to collect data
from the top 1,000 repositories ranked by the number of stars.
Furthermore, referencing previous research [4], [9], [12], we
conducted extensive work in cleaning, filtering, and processing
the data to ensure the highest possible quality.

The threat to construct validity arises from the evaluation
metrics employed. To mitigate this threat, we utilize four
metrics that have been extensively employed in previous
studies on commit message generation [12], [19]. Moreover,
we conduct a human evaluation to assess the effectiveness
from the developers’ perspective. By rigorously adhering to
the methodology of prior research and engaging experienced
developers, we aim to minimize potential threats in human
evaluation.

B. Limitations
This section discusses the limitations of our work. Firstly,

the amount of annotated data utilized for training the extraction
module is relatively limited. Although the current volume
enables the module to possess a satisfactory extraction capabil-
ity, additional data would undoubtedly improve the extraction
performance. Secondly, due to the pipeline structure within
ExGroFi, error propagation exists between different stages.
The quality of issue data and the performance of the upstream
stage both influence the final generation outcome. Lastly,
although the results generated by ExGroFi-enhanced models
contain more rational information, these commit messages are
sometimes not concise enough.

TABLE IV: Examples that demonstrate ExGroFi’s effect.
Before Add support for custom field.
After Fix TimingKey to reclaim the memory.1
Issue ... There is no mechanism to reclaim the memory after the filters are unreachable ...
Before Reduce visualisation to fix issue.
After Fix exception with error handler in Mono.subscribe().2
Issue ... Error handler in Mono.subscribe() should handle exceptions thrown by subscriber ...
Before Update process instance.
After Fix bug when starting process instance.3

... No tenant is set when starting process instance ...Issue ... Expect a tenant user can start a process instance in task application ...
“Before” and “After” represent the commit messages generated by the model before and after using ExGroFi, respectively.
“Issue” provides part of the text in the related issue; among them, the red text indicates the actual state, and the green text indicates the expected state.
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VIII. RELATED WORK

Existing methods for commit message generation can be
categorized as template-based, learning-based, information
retrieval-based and hybrid models.

Early methods were typically template-based [2], [10], [11].
These techniques used parsers to analyze the modification of
source code and generated commit messages with pre-defined
rules. For instance, Buse et al. [10] symbolically executed
code changes to acquire path predicates, then generated com-
mit message using a set of pre-defined rules based on the
path. Cortés-Coy et al. [2] proposed a template based on
stereotypes [69], [70], then filled the template with extracted
information to generate commit message.

Learning-based methods [6], [8], [14], [15], [17] drew
inspiration from the idea of neural machine translation and
modeled the generation of commit message as a sequence-to-
sequence task. Jiang et al. [8] early attempted to respectively
treat code change and commit message as input and output.
Loyola et al. [6] proposed an encoder-decoder model with the
attention mechanism proposed by Luong et al. [71]. Dong et
al. [17] represented code change via fine-grained graphs and
generated commit message with graph neural network [72].

Retrieval-based approaches [12], [13] sorted existing com-
mit messages according to similarity as output. Liu et al. [12]
represented code change as bag-of-words vectors and then
used the nearest neighbor algorithm to sort. Hoang et al. [13]
learned a distributed representation for code change guided
by commit message. The learned representations are used to
adapt the bag-of-words vectors of the former model.

Hybrid architectures [18] combined the former two types
of approaches. Liu et al. made use of the Abstract Syntax
Trees of the code change in the learning module and sorted
them according to cosine similarity in the retrieval module.
The final result is output by a ranking module that prioritize
the commit message obtained from the former two modules.

Influenced by powerful pre-trained language models in
natural language processing [39], [21], many pre-trained
models that provide distributed representations of code have
emerged in recent years [23], [24], [25]. At present, the main
paradigm to generate commit message is to combine pre-
trained code representation models with task-specific gener-
ation modules [19].

IX. CONCLUTION AND FUTURE WORK

In this work, we delve into the correlation between commits
and issues, addressing a previously unexplored aspect of auto-
matic commit message generation. We collect a large commit-
issue parallel dataset, allowing for a deeper understanding
of the rational information issues provide. A novel paradigm
ExGroFi is also proposed to extract and incorporate fine-
grained knowledge from issues into the commit message
generation process. The extensive evaluation demonstrates
the effectiveness of ExGroFi in significantly improving the
rationality of generated commit messages while maintaining
other performance indicators.

This paper can serve as a foundation for future research in
commit message generation, particularly in exploring methods
of extracting and incorporating external information from
issues and other modalities. For instance, researchers can
explore the pre-training of large-scale language models based
on such commit-issue correlation, investigate more efficient
methods for incorporating external knowledge into the com-
mit message generation process, or transfer principles of
ExGroFi to other tasks in the field of automated software
engineering.
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