
CodeAgent: Collaborative Agents for Software
Engineering

Daniel Tang♠ B Zhenghan Chen♣ Kisub Kim▲ B Yewei Song♠ Haoye Tian♠

Saad Ezzini♦ Yongfeng Huang⋆ Jacques Klein♠ Tegawendé F. Bissyandé♠
♠University of Luxmbourg ♣Microsoft ▲Singapore Management University

♦Lancaster University ⋆The Chinese University of Hong Kong.
xunzhu.tang@uni.lu falconlk00@gmail.com

Abstract

Code review is a heavily collaborative process, which aims at ensuring the over-
all quality and reliability of software. While it provides massive benefits, the
implementation of code review in an organization faces several challenges that
make its automation appealing. Automated code review tools have been around
for a while and are now improving thanks to the adoption of novel AI mod-
els, which help can learn about standard practices and systematically check that
the reviewed code adheres to them. Unfortunately, existing methods fall short:
they often target a single input-output generative model, which cannot simulate
the collaboration interactions in code review to account for various perspectives;
they are also sub-performing on various critical code review sub-tasks. In this
paper, we advance the state of the art in code review automation by introduc-
ing CodeAgent, a novel multi-agent-based system for code review. Funda-
mentally, CodeAgent is steered by QA-Checker (short for “Question-Answer
Checking"), a supervision agent, designed specifically to ensure that all agents’
contributions remain relevant to the initial review question. CodeAgent is au-
tonomous, multi-agent, and Large language model-driven. To demonstrate the
effectiveness of CodeAgent, we performed experiments to assess its capa-
bilities in various tasks including 1) detection of inconsistencies between code
changes and commit messages, 2) detection of vulnerability introduction by com-
mits, and 3) validation of adherence to code style. Our website is accessed in
https://code-agent-new.vercel.app/index.html.

1 Introduction

Code review, as a fundamental activity in software engineering, has been widely studied in the
literature [2; 3; 8]. It involves multiple team members, with different expertise and experience, col-
laborating to check the code along several dimensions, including whether the new code is aligned
with existing code in terms of style [14], whether the pull request contents are consistent [43],
whether some vulnerability is being injected [4], etc. This review effort is critical for ensuring the
stability, quality and readability of the code. Historically, code review has been an intensive manual
exercise. Nowadays, however, software projects evolve at a rapid pace with a high frequency of
commits and pull requests. For example, in 2022, GitHub, a global platform for software develop-
ment, witnessed over 3.5 billion contributions, including commits, pull requests, and other forms of
contributions [16; 30]. Reviewing these contributions before they are integrated into any code base
requires automated tools to ease the workload of code contributors and code reviewers.

B: Corresponding Authors.

Preprint.

ar
X

iv
:2

40
2.

02
17

2v
3

 [
cs

.S
E

]
 1

5
Fe

b
20

24

https://code-agent-new.vercel.app/index.html

In recent literature, various approaches [35; 32; 34] have been proposed to elevate code review au-
tomation, using Transformers [36] for code modeling, code abstraction tools such as src2abs [33]
and code transformation engines such as AutoTransform [32]. These state-of-the-art approaches
however mainly focused on how to rewrite and adapt the submitted code. Code review, however,
is actually a collaborative and iterative process involving multiple stakeholders exchanging on a
specific thought process [2] and addressing a wide variety of subtasks such as analyzing the con-
sistency between a code change and the associated commit message (CA) [43], detecting potential
vulnerability injection (V A) [4], assessing the consistency of code format (FA) [14], etc.

To address the challenges of complex software collaboration eco-system, researchers have applied
agent-based systems across a spectrum of tasks, advancing past the conventional single input-output
paradigm [40; 38]. Notably, the advent of multi-agent collaboration stands out as a key innovation,
especially in simulating human-like behaviors [10; 24; 27] and harnessing the collective strengths
of various agents [7; 22; 17].

In this paper, drawing on the success of agent-based collaboration, we developed an agent-based
framework, CodeAgent, to simulate the dynamics of a collaborative team engaged in code re-
view processes, incorporating various roles such as code authors, reviewers, and decision-makers.
Nonetheless, a notable hurdle within multi-agent systems and Chain-of-Thought (CoT) reasoning
is the propensity for conversation topics to drift off course, underlining the necessity for strate-
gies to maintain topic relevance and coherence [20; 6]. The occurrence of drift, often triggered
by the model-inspired tangents or the randomness of Large Language Models (LLMs), necessi-
tating the integration of a QA-Checker. This QA-Checker, serving as a crucial supervisory agent
within CodeAgent, meticulously monitors the flow of conversation, ensuring that questions and
responses remain pertinent and on track, thus maintaining the dialogue’s intended direction [20; 6].
As an instruction-driven entity, the QA-Checker not only refines queries but also realigns answers to
match the original intent, employing a systematic approach grounded in a mathematical framework.
This involves leveraging a quality assessment function Q and the Newton-Raphson optimization
method [41] to iteratively guide the conversation towards optimal coherence and relevance.

To evaluate the performance of CodeAgent, we employ two distinct sources of data. The first
encompasses pre-existing datasets: Trans-Reviewdata, AutoTransformdata, and T5-Reviewdata,
which have been referenced by leading research in the field. By conducting experiments with these
datasets, we aim to compare the code revision capabilities of CodeAgent against those identified
as state-of-the-art. The second data source comprises a collection of Pull Requests from GitHub,
featuring an extensive array of commits, messages, and comments across nine programming lan-
guages post-April 2023. These languages include Python, Java, Go, C++, JavaScript, C, C#, PHP,
and Ruby. This diverse dataset is specifically curated for testing format analysis. The experimen-
tal results indicate that CodeAgent outperforms the state-of-the-art results in terms of qualitative
metrics for code review, achieving a 41.54 percentage point (pp) increase in hit rate (Ratecr in Ta-
ble 3) confirming vulnerable issues within merged commits across the nine programming languages.
CodeAgent also excels in consistency detection, vulnerability identification, and format analysis,
outperforming ChatGPT in overall metrics.

In conclusion, we summarize our contributions as follows:

• We build a code review dataset with more than 3,545 real-world commits, commit mes-
sages, and corresponding original files for assessing code review model performance in
various areas including consistency detection between commits and commit messages, vul-
nerability detection, code style detection, and code revision.

• To the best of our knowledge, we are the first to propose an autonomous agent-based system
for practical code review in the field of software maintenance.

• Experimental results show that CodeAgent confirms 104 (23.20% higher) more vulnera-
ble issues. Compared to state-of-the-art, CodeAgent improves 5.62pp and 4.00pp of re-
call and F1-Score, respectively, for the consistency detection between commit and commit
message. CodeAgent also boosts 15.96pp and 10.45pp of the recall score and F1-Score,
respectively, for the format consistency detection. On the code revision task, CodeAgent
surpasses the state-of-the-art from 29.80pp to 31.60pp of the Edit Progress (EP) metric [44]
on average.

2

2 Tasks and Definition

In this section, we summarize our tasks (❶,❷,❸,and ❹) and definitions (CA,V A,FA) in Table. 1.

Table 1: Tasks and Definitions

Index Tasks
❶ Semantic consistency detection between commit and commit message
❷ Vulnerability analysis
❸ Format consistency detection
❹ Code revision

Short Term Definition
CA Consistency analysis between commit and commit message
V A Vulnerability analysis
FA Format consistency analysis between commit and original files

3 CodeAgent

This section details the methodology behind our innovative CodeAgent framework. We first de-
scribe the defined role cards in Section 3.1 and discuss the pipeline in Section 3.2. Finally, we will
discuss the design of the QA-Checker.

3.1 Role Card Definition

As shown in Figure 1, we defined six characters in our simulation system (CodeAgent), including
User, CEO, CPO, CTO, Reviewer, Coder, and they are defined for different specific tasks.

For each, we defined a role card, which contains: 1) The role name is put on the left-upper corner
of each card; 2) The phases of the role involved are put on the right-upper corner of each card;
3) On each role card, we show the role-involved conversation and collaborative roles; 4) We show
the intermediate output of the role on the right-hand side of the card; and 5) Finally, we put the
corresponding files or content out of conversations on the bottom of the card.

All tasks are processed by the collaborative work of two agents in their multi-round conversations.
For example, as a role Reviewer, her responsibility is to do the code review for given codes and
files in three aspects (task ❶, ❷, and ❸ in Table 1) and provide a detailed description of observation.
Reviewer’s code review activity is under the assistance with Coder as shown in Figure 2. Mean-
while, with the Review’s assistance, Coder can process the code revision as shown in the ‘Revised
codes’ part in the Coder card in Figure 1. Apart from Reviewer, Coder also cooperates with CTO
and CEO in the simulated team.

Each role and conversation, input and output of each conversation is designed in Figure 1. Further
information about role definition details is provided in our Appendix-Section B.1.

3.2 Pipeline

We specifically consider the following sub-tasks of code review: consistency detection between
commit and commit message (CA) [43], vulnerability injection detection (V A) [4], Format consis-
tency detection (FA) [14], and code revision [44]. We defined six characters and four phases for
the framework. The roles of characters are demonstrated in Figure 1. Each phase contains multiple
conversations and each conversation happens between agents. The four phases consist of ① Basic
Info Sync, containing the roles of chief executive officer (CEO), chief technology officer (CTO)
and Coder to conduct modality and language analysis; ② Code Review, leveraging the Coder and
Reviewer for actual code review (i.e., target sub-tasks); ③ Code Alignment, supporting the Coder
and Reviewer to correct the commit by code revision or suggestion feedback to the author; ④ Doc-
ument, finalizing by synthesizing the opinions of the CEO, CPO, Coder and Reviewer to give
out the final comments.

3

Commit MessagePull Request

I prossess a piece of code that might contain some bugs. Could you assist in
inspecting it for any issues? If problems are found, I would appreciate the
provision of a corrected version. I am seeking an in-depth review of the
code, specially focusing on the following aspect:......

CodeAgent

Phases：
Basic Info Sync；
Document

N

Output

document Code modality Language

Role Definition:

##Conversations

Basic Info Sync Document

Your main responsibilities include being an
active decision-maker on code review.....

User CEO ReviewerCPO Coder

Team Roles

CTO

Check in loop

N N

##Files

N

Phases：
Basic Info Sync

N

Output

modality Language

Role Definition:

##Conversations
Basic Info Sync

You are CTO of CodeAgent, you are fimiliar to virous
programming languages and good at overarching....

Phases：
Code Review;
Code Alignment;
Document

N

Role Definition:

##Conversations

Document

Your main responsibilities include being an
active decision-maker on code review.....

N N

##Revised codes

Action Analysis
To address this potential bug, I recommend using the
"Objects.equals" method instead of directly calling "equals" on the
"expected" object. This will ensure a null-safe and consistent
comparison.

Code
Alignment

Code
Review

##Files
Code Log

Role Definition:

##Conversations

You are a Code reviewer at CodeAgent collaborating to
ensure software quality by assessing code for defects,
vulnerabilities, and consistency issues, fixing bugs, and
suggesting improvements...

Phases：
Code Review;
Code Alignment

N N

Code
Alignment

Code
Review

##Consistency Analysis
... I found that there is a lack of semantic consistency between
them. The commit message does not accurately reflect the
changes mad in the code. This inconsistency

##Security Analysis
... I did not find nay modifications in the code that could introduce
security vulnerabilities, attacks, or bugs....However, it is always
recommended to conduct a thorough security review of the entire
codebase to ensure

Format Analysis
The format of the code snippet does not align with the writing
style and format of the original file. Inconsistent formatting can
negatively impact the readability and maintainability of the
project. It is important to maintain a consistent coding....## Revision Suggestions

I recommend aligning the code snippet with the writing style. I suggest revising the code to fix the
potential risk

Phases：
Document

Role Definition:

##Conversations

You are a CPO woking in codeagent, you are responsible for
assisting CEO and coder to summary code review reports...

##Files

N

Document
N

document

code original file conversation

CEO CTO

Reviewer

Coder

CPO

Figure 1: A Schematic diagram of role data cards of simulated code review team and their
conversations within CodeAgent. We have six characters in CodeAgent across four phases,
including “Basic Info Sync", “Code Review", “Code Alignment", and “Document". Code review is
a kind of collaboration work, where we design conversations between every two roles for every step
to complete the task.

Apart from six defined roles, the proposed architecture of CodeAgent consists of phase-level and
conversation-level components. At the phase level, the waterfall model is used to break down the
code review process into four sequential phases. At the conversation level, each phase is further
divided into atomic conversations. These atomic conversations involve task-oriented role-playing
between two agents, promoting collaborative communication. One agent works as the instructor
and the other works as the assistant. Communication follows an instruction-following style, where
agents interact to accomplish a specific subtask within each conversation and each conversation is
under the supervision of QA-Checker. QA-Checker is used to align the consistency of questions and
answers between the instructor and assistant in a conversation to avoid digression. QA-Checker will
be introduced in Section 3.3.

Here, we take an example to show the pipeline of CodeAgent. As shown in Figure 2, CodeAgent
receives the request to do the code review with the submitted commit, commit message, and original
files. In the first phase, CEO, CPO, and Coder will cooperate to recognize the modality of the
input (e.g., document, code) and language (e.g., Python, Java, and Go). In the second phase, with
the help of Coder, Reviewer will write an analysis report about consistency analysis, vulnerability
analysis, format analysis, and suggestions for code revision. Then, in the third phase, according to
analysis reports, Coder will align or revise the code if it finds incorrect snippets with the help of
Reviewer. Coder cooperates with CTO and CEO to summarize the document and codes about
the whole code review in the final phase.

4

Basic Info Sync Code Review Code Alignment Document

In
st

ru
ct

or
A

ss
is

to
r

Modality Language Code/Doc Code/Doc
Reviews

Commit MessagePull Request code original file looped conversations

N

Code/Doc
N N N N N N N

N

User CEO ReviewerCPO CoderCTO

Roles

Figure 2: CodeAgent’s pipeline/scenario of a full conversation during the code review process
among different roles. “Basic Info Sync” demonstrates the basic information confirmation by the
CEO, CTO, and Coder; “Code Review” shows the actual code review process; “Code Alignment”
illustrates the potential code revision; and “Document” represents the summarizing and writing
conclusion for all the stakeholders. All the conversations are being ensured by the Quality Assurance
checker until they reach the maximum dialogue turns or meet all the requirements.

3.3 Self-Improving CoT with QA Checker

1

instructor

assistor

question (instruction)

answer

2 Nq0 a0

QA
checker

q1

CB(q0+ aai0)

a1

QA
checker

q2

CB(q1+ aai1)

... an

QA
checker

influence

shared
memory

 q

a

CB

aai

Combination
function

added adjusted
instruction

Figure 3: This diagram shows the architecture of our designed Chain-of-Thought (CoT): Question-
Answer Checker (QA-Checker).

QA-Checker is an instruct-driven agent, designed to fine-tune the question inside a conversation to
drive the generated answer related to the question. As shown in Figure 3, the initial question (task
instruction) is represented as q0, and the first answer of the conversation between Reviewer and
Coder is represented as a0. If QA-Checker identifies that a0 is inappropriate for q0, it generates
additional instructions attached to the original question (task instruction) and combines them to
ask agents to further generate a different answer. The combination in Figure 3 is defined as q1 =

5

CB(q0 + aai0), where aai0 is the additional instruction attached. The conversation between two
agents is held until the generated answer is judged as appropriate by QA-Checker, it reaches the
maximum dialogue times, otherwise.

Theoretical Analysis of QA-Checker in Dialogue Refinement The QA-Checker is an
instruction-driven agent, crucial in refining questions and answers within a conversation to ensure
relevance and precision. Its operation can be understood through the following lemma and proof.
Lemma 3.1. Let Q(Qi, Ai) denote the quality assessment function of the QA-Checker for question-
answer pair (Qi, Ai) in a conversation at the i-th iteration. Assume Q is twice differentiable and
its Hessian matrix H(Q) is positive definite. If the QA-Checker modifies the question Qi to Qi+1

by attaching an additional instruction aaii, and this leads to a refined answer Ai+1, then the se-
quence {(Qi, Ai)} converges to an optimal question-answer pair (Q∗, A∗), under specific regularity
conditions.

Proof. The QA-Checker refines the question and answers using the rule:

Qi+1 = Qi + aaii,

Ai+1 = Ai − αH(Q(Qi, Ai))
−1∇Q(Qi, Ai),

where α is the learning rate. To analyze convergence, we consider the Taylor expansion of Q around
(Qi, Ai):

Q(Qi+1, Ai+1) ≈ Q(Qi, Ai) +∇Q(Qi, Ai)

· (Qi+1 −Qi, Ai+1 −Ai)

+
1

2
(Qi+1 −Qi, Ai+1 −Ai)

T

H(Q(Qi, Ai))(Qi+1 −Qi, Ai+1 −Ai).

Substituting the update rule and rearranging, we get:

Q(Qi+1, Ai+1) ≈ Q(Qi, Ai)

− α∇Q(Qi, Ai)
TH(Q(Qi, Ai))

−1

∇Q(Qi, Ai)

+
α2

2
∇Q(Qi, Ai)

TH(Q(Qi, Ai))
−1

∇Q(Qi, Ai).

For sufficiently small α, this model suggests an increase in Q, implying convergence to an optimal
question-answer pair (Q∗, A∗) as i → ∞. The convergence relies on the positive definiteness of
H(Q) and the appropriate choice of α, ensuring each iteration moves towards an improved quality
of the question-answer pair.
In practical terms, this lemma and its proof underpin the QA-Checker’s ability to refine answers
iteratively. The QA-Checker assesses the quality of each answer concerning the posed question,
employing advanced optimization techniques that is modeled by the modified Newton-Raphson
method to enhance answer quality. This framework ensures that, with each iteration, the system
moves closer to the optimal answer, leveraging both first and second-order derivatives for efficient
and effective learning.

4 Experimental Design

We evaluate the performance of CodeAgent in various qualitative and quantitative experiments in
nine programming languages, on four metrics. In this Section, we will discuss experimental settings,
including datasets, metrics, and baselines. For more information, please see Appendix B.

4.1 Datasets

For our research, we leverage datasets from prior studies as referenced in the state-of-the-art [44].
Specifically, we utilized Trans-Reviewdata, AutoTransformdata, and T5-Reviewdata to assess the
edit progress (EP) metric which is also designed by them [44].

6

As shown in Table 2, in terms of new data collection, which is called codeData, is collected using
the GitHub REST API, encompasses over 3,545 commits and 2,933 pull requests from more than
180 projects in nine programming languages (Python, Java, Go, C++, JavaScript, C, C#, PHP, and
Ruby). It focuses on consistency and format detection, featuring both positive and negative samples
segmented by the merged and closed status of pull requests across various languages. The detailed
information about the dataset can be seen in Appendix-Section E.

Table 2: Comparison of Positive and Negative Samples in CA and FA (CA and FA are defined in
Section 2).

Samples CA FA
Merged Closed Merged Closed

Positive (consistency) 2,089 820 2,238 861
Negative (inconsistency) 501 135 352 94

4.2 Metrics

F1-Score and Recall. We utilized the F1-Score and recall to evaluate our method’s effectiveness.
The F1-Score, a balance between precision and recall, is crucial for distinguishing between false
positives and negatives. Recall measures the proportion of actual positives correctly identified [19].

Edit Progress (EP). EP evaluates the improvement in code transitioning from erroneous to correct
by measuring the reduction in edit distance between the original code and the prediction. A higher
EP indicates better efficiency in code generation [9; 11; 44].

Hit Rate (Rate) We also use hit rate to evaluate the rate of confirmed vulnerable issues out of the
found issues by approaches.

4.3 State-of-the-Art Tools and Models

Our study evaluates various tools and models for code revision and modeling. Trans-Review [35]
employs src2abs for code abstraction, effectively reducing vocabulary size. AutoTransform [32]
uses Byte-Pair Encoding for efficient vocabulary management in pre-review code revisions. T5-
Review [34] leverages the T5 architecture, emphasizing improvement in code review through
pre-training on code and text data. In handling both natural and programming languages, Code-
BERT [12] adopts a bimodal approach, while GraphCodeBERT [13] incorporates code structure
into its modeling. CodeT5 [37], based on the T5 framework, is optimized for identifier type aware-
ness, aiding in generation-based tasks. Additionally, we compare these tools with ChatGPT [26]
by OpenAI, notable for its human-like text generation capabilities in natural language processing.

5 Experimental Result Analysis

In this Section, we discuss the performance of CodeAgent on four main experiments: vulnerability
analysis (Section 5.1), inconsistency detection between commit and commit message (Section 5.2),
format inconsistency detection (Section 5.2), and code revision (Section 5.3). We also discuss the
difference in execution time of CodeAgent across different languages and conduct capabilities
analysis between CodeAgent and other communicative agents in Appendix-Section D.

5.1 Vulnerability Analysis

As shown in Table 1, vulnerability analysis ❷ is one subtask of code reviews. Compared to ❶ and
❸, ❷ is a more complex code review subtask, covering more than 25 different aspects (please see
the Appendix-Section F), including buffer overflows, sensitive data exposure, configuration errors,
data leakage, etc. This domain necessitates deep technical expertise for accurate data annotation,
thereby significantly increasing the time and money cost when labeling manually. Considering the
low proportion of commits with vulnerabilities, this paper proposes a proactive verification method
for data annotation.

7

Our approach is twofold. First, we utilize CodeAgent to process 3,545 pairs of commits, commit
messages and original files across nine languages. These identified data points for potential vulnera-
bilities were then subjected to manual verification. Second, we employed tools like CodeBERT [12]
and ChatGPT to do vulnerability binary detection in the same dataset. The results were then verified
for their authenticity.

Table 3: Vulnerable problems (#) found by CodeAgent and other approaches. As described in
Appendix-Section E, we have 3,545 items to evaluate. Ratecr means the confirmed number divided
by the number of findings while Rateca is the confirmed number divided by the total evaluated
number. CodeAgent w/o means CodeAgent without QA-Checker.

Approach CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent CodeAgent w/o

Find 1,063 864 671 483 564
Confirm 212 317 345 449 413
Ratecr 19.94% 36.69% 51.42% 92.96% 73.23%
Rateca 5.98% 8.94% 9.73% 12.67% 11.65%

Comparison As delineated in Table 3, the deployment of CodeAgent successfully identified
483 potential vulnerabilities within a dataset of 3,545 items, with an impressive 449 of these ulti-
mately confirmed as high-risk vulnerabilities, substantiated through a rigorous manual verification
process exceeding 120 working hours1. CodeBERT, a key pre-trained model for code-related tasks,
with its parameters frozen for this experiment, initially identified 1,063 items as vulnerable, yet
only 212 passed the stringent verification criteria. Similar trends were observed with ChatGPT-
3.5 and ChatGPT-4.0, which confirmed 317 and 345 vulnerabilities out of 864 and 671 identified
items, respectively. These outcomes are further quantified by the confirmation rates (Ratecr) of
19.94% for CodeBERT, 36.69% for ChatGPT-3.5, and 51.42% for ChatGPT-4.0, while CodeAgent
demonstrated a remarkable Ratecr of 92.96%. Additionally, the analysis of confirmed vulnerabili-
ties against all analyzed items (Rateca) yielded 5.98%, 8.94%, 9.73%, and 12.67% for CodeBERT,
ChatGPT-3.5, ChatGPT-4.0, and CodeAgent, respectively. Evidently, Table 3 not only highlights
CodeAgent’s high precision in identifying vulnerable commits but also reveals the progressive
improvement from ChatGPT-3.5 to ChatGPT-4.0, likely due to the latter’s capacity to handle longer
input sequences, with token limits of 4,096 and 32,768, respectively. The integration of sophisti-
cated algorithms like CoT and QA-Checker in CodeAgent has significantly enhanced its capabil-
ities in vulnerability detection, surpassing the individual input-output efficiencies of ChatGPT and
CodeBERT. Further details regarding the importance of the QA-checker can be seen in Appendix-
Section C and Section L. Moreover, more experimental results in 9 languages are accessible in
Appendix-Section I.

In addition, the analysis of vulnerabilities identified by various models reveals interesting overlaps in
their findings. CodeBERT confirmed 212 vulnerabilities, whereas ChatGPT-3.5, ChatGPT-4.0, and
CodeAgent confirmed 317, 345, and 449 vulnerabilities, respectively. Notably, the intersection of
vulnerabilities confirmed by CodeBERT and ChatGPT-3.5 is 169, indicating a substantial overlap
in their findings. Similarly, the intersection between CodeBERT and ChatGPT-4.0 is 170, while a
more significant overlap of 212 vulnerabilities is observed between ChatGPT-3.5 and ChatGPT-4.0.
The combined intersection among CodeBERT, ChatGPT-3.5, and ChatGPT-4.0 is 137, underscoring
the commonalities in vulnerabilities detected across these models. Furthermore, the intersections of
vulnerabilities confirmed by CodeBERT, ChatGPT-3.5, and ChatGPT-4.0 with CodeAgent are
212, 317, and 334, respectively, highlighting the comprehensive coverage and detection capabilities
of CodeAgent.

1The verification process involved meticulous manual examination, extending beyond 120 working hours.

8

10
73

89

32

33

75

137

CodeBERT

ChatGPT3.5

ChatGPT4.0

CodeAgent

11

Figure 4: Venn Diagram of CodeBERT, ChatGPT-3.5, ChatGPT-4.0, and CodeAgent.

Ablation Study As shown in Table 3, without QA-Checker, CodeAgent w/o is less effective in
finding vulnerable issues and reduces the hit rate (Ratecr and Rateca) compared with the full version,
indicating the importance of QA-Checker in our CodeAgent. More detailed information about the
ablation study can be found in Appendix-Section L.

Moreover, CodeAgent versions 3.5 and 4.0 yielded consistent detection results, but they differ
in the quality of explanation when doing the vulnerability analysis of the commit. More details
about the difference between CodeAgent-3.5 and CodeAgent-4.0 are provided in Appendix-
Section K.2.

5.2 Consistency and Format Detection

In this Section, we will discuss the performance of CodeAgent and baselines on metrics like the
F1-Score and recall score of task ❶ and ❸. For ❶ and ❸, the dataset we have is shown in Table 2
and more detailed data information is shown in Figure 7 in Appendix.

Consistency Detection Between Commit and Commit Message Our comprehensive study, as
illustrated in Table 4, assesses CodeAgent’s efficacy in detecting the consistency between com-
mit and commit message, contrasting its performance with other prevalent methods like Code-
BERT, ChatGPT-3.5, and ChatGPT-4.0. This evaluation specifically concentrates on merged and
closed commits across nine languages, with a keen focus on crucial metrics such as Recall and
F1-Score. Notably, CodeAgent exhibits a remarkable performance, outstripping other methods in
both merged and closed scenarios. In terms of Recall, CodeAgent achieved an impressive 90.11%
for merged commits and 87.15% for closed ones, marking a considerable average improvement of
5.62pp over the other models. Similarly, the F1-Score of CodeAgent stands at 93.89% for merged
and 92.40% for closed commits, surpassing its counterparts with an average improvement of 4.00pp.
More comparable details in different languages are shown in Appendix-Section. J.

Format Consistency Detection Between Commit and Original File In our detailed evaluation
of format consistency between commits and original files, CodeAgent’s performance was bench-
marked against established models like CodeBERT and ChatGPT variants across nine different lan-
guages. This comparative analysis, presented in Table 5, was centered around pivotal metrics such
as Recall and F1-Score. CodeAgent demonstrated a significant edge over the state-of-the-art, par-
ticularly in the merged category, with an impressive Recall of 89.34% and an F1-Score of 94.01%.
These figures represent an average improvement of 10.81pp in Recall and 6.94pp in F1-Score over
other models. In the closed category, CodeAgent continued to outperform, achieving a Recall
of 89.57% and an F1-Score of 94.13%, surpassing its counterparts with an average improvement
of 15.96pp in Recall and 9.94pp in F1-Score. The overall average performance of CodeAgent
further accentuates its superiority, with a Recall of 89.46% and an F1-Score of 94.07%, marking
an average improvement of 15.96pp in Recall and 10.45pp in F1-Score. These results underscore

9

Table 4: Comparison of CodeAgent with other methods on merged and closed commits across 9
languages on CA task. ‘Imp’ represents the improvement.

Merged CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent Imp (pp)
Recall 63.64 80.08 84.27 90.11 5.84

F1 75.00 87.20 90.12 93.89 3.77

Closed CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent Imp (pp)
Recall 64.80 79.05 81.75 87.15 5.40

F1 77.20 87.35 89.10 92.40 3.30

Average CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent Imp (pp)
Recall 64.22 79.57 83.01 88.63 5.62

F1 76.01 87.28 89.61 93.16 4.00

CodeAgent’s exceptional capability in accurately detecting format consistency between commits
and their original files.

Table 5: Comparison of CodeAgent with other methods on merged and closed commits across the
9 languages on FA task. ‘Imp’ represents the improvement.

Merged CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent Imp (pp)
Recall 60.59 60.72 78.53 89.34 10.81

F1 74.14 74.88 87.07 94.01 6.94

Closed CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent Imp (pp)
Recall 69.95 73.61 68.46 89.57 15.96

F1 80.49 84.19 80.16 94.13 9.94

Average CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent Imp (pp)
Recall 65.27 67.17 73.50 89.46 15.96

F1 77.32 79.54 83.62 94.07 10.45

5.3 Code Revision

In this Section, we evaluate the effectiveness of various approaches in bug fixing by comparing
their Error Percentage (EP) performance. The methods under consideration include Trans-Review,
AutoTransform, T5-Review, CodeBERT, GraphCodeBERT, CodeT5, and CodeAgent. As de-
tailed in Table 6, these approaches exhibit varied performance across different datasets. Notably,
CodeAgent demonstrates a remarkable performance, particularly in the T5-Review dataset, where
it achieves the highest EP of 37.6%. This is a significant improvement over other methods, under-
scoring the effectiveness of CodeAgent in handling complex code revision tasks. Additionally,
with an average EP of 31.6%, CodeAgent consistently outperforms its counterparts, positioning
itself as a leading solution in automated code revision. The contribution of CodeAgent to the field
of automated code revision is noteworthy. Its ability to excel in the T5-Review dataset, a challeng-
ing benchmark, indicates a sophisticated understanding and handling of nuanced bugs. Moreover,
its overall average performance surpasses that of other state-of-the-art models, highlighting its ro-
bustness and reliability. These results suggest that CodeAgent outperforms the state-of-the-art
approaches in fixing buggy codes on EP metric on average.

Table 6: Experimental Results for the Code Revision of CodeAgent and the state-of-the-art works.
Bold indicates the best performers.

Approach Trans-Reviewdata AutoTransformdata T5-Reviewdata Average
EP EP EP EP

Trans-Review -1.1% -16.6% -151.2% -56.3%
AutoTransform 49.7% 29.9% 9.7% 29.8%
T5-Review -14.9% -71.5% 13.8% -24.2%
CodeBERT 49.8% -75.3% 22.3% -1.1%
GraphCodeBERT 50.6% -80.9% 22.6% -2.6%
CodeT5 41.8% -67.8% 25.6% -0.1%
CodeAgent 42.7% 14.4% 37.6% 31.6%

10

6 Related Work

Automating Code Review Activities Our work contributes to automating code review activities,
focusing on detecting source code vulnerabilities and maintaining code consistency. Related studies
include Hellendoorn et al. [15], who addressed code change anticipation, and Siow et al. [29], who
introduced CORE for code modification semantics. Hong et al. [18] proposed COMMENTFINDER
for comment suggestions, while Tufano et al. [35] and Li et al. [23] developed tools for code re-
view automation using models like T5CR and CodeReviewer, respectively. Recently, Lu et al. [25]
incorporated large language models for code review, enhancing fine-tuning techniques.

Collaborative AI Collaborative AI, involving AI systems working towards shared goals, has seen
advancements in multi-agent LLMs [31; 28], focusing on collective thinking, conversation dataset
curation [39; 21], and sociological phenomenon exploration [27]. Research by Akata et al. [1] and
Cai et al. [5] further explores LLM cooperation and efficiency. However, there remains a gap in
integrating these advancements with structured software engineering practices [21; 28], a challenge
our approach addresses by incorporating advanced human processes in multi-agent systems. For a
complete overview of related work, please refer to our Appendix-Section A.

7 Conclusion

This paper introduces CodeAgent, a novel multi-agent-based framework designed to automate
code reviews, leveraging an innovative QA-Checker system to maintain focus and alignment with the
review’s objectives. CodeAgent demonstrates promising capabilities in detecting vulnerabilities,
ensuring consistency between code changes and commit messages, and improving uniformity of
code style. Our CodeAgent outperforms existing state-of-the-art solutions. By considering the
specific characteristics of the code review process and incorporating the human-like conversational
framework, CodeAgent significantly enhances efficiency and accuracy. Finally, we believe that
our paper opens a new avenue for future software development collaboration practice and research.

8 Impact Statement

The adoption of our multi-agent-based code review framework promises to revolutionize how soft-
ware development teams ensure code quality. By automating and enhancing the code review process,
developers can allocate more time to creative and value-added tasks, leading to increased productiv-
ity and a higher standard of software craftsmanship. We expect that the adaptive learning capabilities
of our approach contribute to a sustainable and evolving solution, capable of addressing the dynamic
challenges in modern software development and machine learning.

9 Acknowledgments

This work is supported by the NATURAL project, which has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant No. 949014).

References

[1] Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge, and Eric Schulz.
Playing repeated games with large language models. arXiv preprint, 2023.

[2] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern code
review. In 2013 35th International Conference on Software Engineering (ICSE), pages 712–
721. IEEE, 2013.

[3] Amiangshu Bosu and Jeffrey C Carver. Impact of peer code review on peer impression for-
mation: A survey. In 2013 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, pages 133–142. IEEE, 2013.

11

[4] Larissa Braz, Christian Aeberhard, Gül Çalikli, and Alberto Bacchelli. Less is more: sup-
porting developers in vulnerability detection during code review. In Proceedings of the 44th
International Conference on Software Engineering, pages 1317–1329, 2022.

[5] Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models
as tool makers. arXiv preprint, 2023.

[6] Hyungjoo Chae, Yongho Song, Kai Tzu-iunn Ong, Taeyoon Kwon, Minjin Kim, Youngjae Yu,
Dongha Lee, Dongyeop Kang, and Jinyoung Yeo. Dialogue chain-of-thought distillation for
commonsense-aware conversational agents. arXiv preprint arXiv:2310.09343, 2023.

[7] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min
Chan, Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collabora-
tion and exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2023.

[8] Nicole Davila and Ingrid Nunes. A systematic literature review and taxonomy of modern code
review. Journal of Systems and Software, 177:110951, 2021.

[9] Victor Dibia, Adam Fourney, Gagan Bansal, Forough Poursabzi-Sangdeh, Han Liu, and
Saleema Amershi. Aligning offline metrics and human judgments of value of ai-pair pro-
grammers. arXiv preprint arXiv:2210.16494, 2022.

[10] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

[11] Ahmed Elgohary, Christopher Meek, Matthew Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. NL-EDIT: Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 5599–
5610, Online, June 2021. Association for Computational Linguistics.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model
for programming and natural languages. In Trevor Cohn, Yulan He, and Yang Liu, editors,
Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-
20 November 2020, volume EMNLP 2020 of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics, 2020.

[13] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan
Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement,
Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-
training code representations with data flow. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[14] DongGyun Han, Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, and Giovanni
Rosa. Does code review really remove coding convention violations? In 2020 IEEE 20th
International Working Conference on Source Code Analysis and Manipulation (SCAM), pages
43–53. IEEE, 2020.

[15] Vincent J Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. Towards automat-
ing code review at scale. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
1479–1482, 2021.

[16] Jeremy Holcombe. Key github statistics in 2024 (users, employees, and trends), Ocb 2023.

[17] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

12

[18] Yang Hong, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Aldeida Aleti. Com-
mentfinder: a simpler, faster, more accurate code review comments recommendation. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 507–519, 2022.

[19] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation metrics for data classi-
fication evaluations. International journal of data mining & knowledge management process,
5(2):1, 2015.

[20] humanfirst. Prompt drift and chaining, May 2023.

[21] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for" mind" exploration of large scale language model
society. arXiv preprint arXiv:2303.17760, 2023.

[22] Yuan Li, Yixuan Zhang, and Lichao Sun. Metaagents: Simulating interactions of human be-
haviors for llm-based task-oriented coordination via collaborative generative agents. arXiv
preprint arXiv:2310.06500, 2023.

[23] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Codereviewer: Pre-training for automating
code review activities. arXiv e-prints, pages arXiv–2203, 2022.

[24] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang,
Zhaopeng Tu, and Shuming Shi. Encouraging divergent thinking in large language models
through multi-agent debate. arXiv preprint arXiv:2305.19118, 2023.

[25] Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. Llama-reviewer: Advancing code review
automation with large language models through parameter-efficient fine-tuning. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE), pages 647–658.
IEEE, 2023.

[26] OPENAI. Chatgpt, 2022.

[27] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceed-
ings of the 36th Annual ACM Symposium on User Interface Software and Technology, pages
1–22, 2023.

[28] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

[29] Jing Kai Siow, Cuiyun Gao, Lingling Fan, Sen Chen, and Yang Liu. Core: Automating review
recommendation for code changes. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 284–295. IEEE, 2020.

[30] software.com. Pull request frequency, 2023.

[31] Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents, 2023.

[32] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamthavorn. Autotrans-
form: Automated code transformation to support modern code review process. In Proceedings
of the 44th International Conference on Software Engineering, pages 237–248, 2022.

[33] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshy-
vanyk. On learning meaningful code changes via neural machine translation. In Proceedings
of the 41st International Conference on Software Engineering, ICSE ’19, 2019.

[34] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk,
and Gabriele Bavota. Using pre-trained models to boost code review automation. In Proceed-
ings of the 44th International Conference on Software Engineering, pages 2291–2302, 2022.

13

[35] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele Bavota.
Towards automating code review activities. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pages 163–174. IEEE, 2021.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017.

[37] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 8696–8708.
Association for Computational Linguistics, 2021.

[38] Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleash-
ing cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023.

[39] Jimmy Wei, Kurt Shuster, Arthur Szlam, Jason Weston, Jack Urbanek, and Mojtaba Komeili.
Multi-party chat: Conversational agents in group settings with humans and models. arXiv
preprint, 2023.

[40] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

[41] Tjalling J Ypma. Historical development of the newton–raphson method. SIAM review,
37(4):531–551, 1995.

[42] Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum,
Tianmin Shu, and Chuang Gan. Building cooperative embodied agents modularly with large
language models. arXiv preprint, 2023.

[43] Mengxi Zhang, Huaxiao Liu, Chunyang Chen, Yuzhou Liu, and Shuotong Bai. Consistent
or not? an investigation of using pull request template in github. Information and Software
Technology, 144:106797, 2022.

[44] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, Junda He, and David Lo. Generation-based
code review automation: How far are we? arXiv preprint arXiv:2303.07221, 2023.

14

Contents (Appendix)

A Complete Related Work 16

B Experimental Details 16
B.1 Role Definition . 16
B.2 Execute Time Across Languages . 17

C Comparative Analysis of QA-Checker AI System and Recursive Self-Improvement Sys-
tems 18
C.1 Comparison Table . 18
C.2 Differences and Implications . 18
C.3 Importance of QA-Checker in Role Conversations 18
C.4 Conclusion . 19

D Capabilities Analysis between CodeAgent and Other Methods 19

E Dataset 20

F Key Factors Leading to Vulnerabilities 21

G Data Leakage Statement 22

H Algorithmic Description of CodeAgent Pipeline with QA-Checker 22

I Detailed Performance of CodeAgent in Various Languages on VA task 23

J More detailed experimental results on CA and FA tasks 24

K Case Study 27
K.1 Performance on 9 languages . 27
K.2 Difference of CodeAgent-3.5 and CodeAgent-4.0 36

L Ablation study 37

M Tool 38

15

A Complete Related Work

Automating Code Review Activities Our focus included detecting source code vulnerabilities, en-
suring style alignment, and maintaining commit message and code consistency. Other studies ex-
plore various aspects of code review. Hellendoorn et al. [15] addressed the challenge of anticipating
code change positions. Siow et al. [29] introduced CORE, employing multi-level embeddings for
code modification semantics and retrieval-based review suggestions. Hong et al. [18] proposed
COMMENTFINDER, a retrieval-based method for suggesting comments during code reviews. Tu-
fano et al. [35] designed T5CR with SentencePiece, enabling work with raw source code without
abstraction. Li et al. [23] developed CodeReviewer, focusing on code diff quality, review com-
ment generation, and code refinement using the T5 model. Recently, large language models have
been incorporated; Lu et al. [25] fine-tuned LLama with prefix tuning for LLaMA-Reviewer, using
parameter-efficient fine-tuning and instruction tuning in a code-centric domain.

Collaborative AI Collaborative AI refers to artificial intelligent systems designed to achieve shared
goals with humans or other AI systems. Previous research extensively explores the use of multi-
ple LLMs in collaborative settings, as demonstrated by Talebirad et al. [31] and Qian et al. [28].
These approaches rely on the idea that inter-agent interactions enable LLMs to collectively enhance
their capabilities, leading to improved overall performance. The research covers various aspects of
multi-agent scenarios, including collective thinking, conversation dataset curation, sociological phe-
nomenon exploration, and collaboration for efficiency. Collective thinking aims to boost problem-
solving abilities by orchestrating discussions among multiple agents. Researchers like Wei et al. [39]
and Li et al. [21] have created conversational datasets through role-playing methodologies. Socio-
logical phenomenon investigations, such as Park et al. [27]’s work, involve creating virtual commu-
nities with rudimentary language interactions and limited cooperative endeavors. In contrast, Akata
et al. [1] scrutinized LLM cooperation through orchestrated repeated games. Collaboration for ef-
ficiency, proposed by Cai et al. [5], introduces a model for cost reduction through large models as
tool-makers and small models as tool-users. Zhang et al. [42] established a framework for verbal
communication and collaboration, enhancing overall efficiency. However, Li et al. [21] and Qian et
al. [28], presenting a multi-agent framework for software development, primarily relied on natural
language conversations, not standardized software engineering documentation, and lacked advanced
human process management expertise. Challenges in multi-agent cooperation include maintaining
coherence, avoiding unproductive loops, and fostering beneficial interactions. Our approach em-
phasizes integrating advanced human processes, like code review in software maintenance, within
multi-agent systems.

B Experimental Details

In our work, the maximum number of conversation rounds is set as 10.

B.1 Role Definition

Six roles are defined as shown in Figure 5.

16

Role Specialization

I'm Chief Executive Officer. Now, we are both working at CodeAgent and we share a common interest in collaborating

to successfully complete the code review for commits or code. My main responsibilities include being a decision-maker

in policy and strategy, a leader managing teams, and an effective communicator with management and employees. I also

specialize in summarizing complex code reviews.

My primary responsibilities involve the integration of commit content, crafting commit messages, managing original

files, and supplying necessary input information like commit details and code.

User

CEO

Reviewer

CPO

Coder

CTO

I am the Chief Product Officer at CodeAgent, collaborating closely with my team to complete code reviews

successfully. I am responsible for assisting CEO and coder to summary code review reports

I am the CTO of CodeAgent, familiar with various programming languages and skilled in overarching technology

strategies. My role involves collaborating on new customer tasks, making high-level IT decisions that align with our

organization's goals, and working closely with IT staff in everyday operations.

I am a Code reviewer at CodeAgent collaborating to ensure software quality by assessing code for defects,

vulnerabilities, and consistency issues, fixing bugs, and suggesting improvements. I also collobrate with othe stuffs to

complete the code revision and summary of code review

I am a Coder at CodeAgent who actively reviews and revises code. I make decisions about code changes and

ensure code quality by evaluating code for defects and suggesting improvements. I am proficient in various

programming languages and platforms, including Python, Java, Go, C++, JavaScript, C, C#, PHP, and Ruby, etc.

Figure 5: Specialization of six main characters in CodeAgent.

Apart from that, for the QA-checker in CodeAgent, we define an initial prompt for it, which is
shown as follows:

I’m the QA-Checker, an AI-driven agent specializing in ensuring quality and coher-
ence in conversational dynamics, particularly in code review discussions at CodeAgent. My
primary role involves analyzing and aligning conversations to maintain topic relevance, en-
suring that all discussions about code commits and reviews stay focused and on track. As a
sophisticated component of the AI system, I apply advanced algorithms, including Chain-of-
Thought reasoning and optimization techniques, to evaluate and guide conversational flow. I
am adept at identifying and correcting topic drifts, ensuring that every conversation adheres
to its intended purpose. My capabilities extend to facilitating clear and effective commu-
nication between team members, making me an essential asset in streamlining code review
processes and enhancing overall team collaboration and decision-making.

B.2 Execute Time Across Languages

As depicted in the data, we observe a significant trend in the average execution time for code reviews
in CodeAgent across various programming languages. The analysis includes nine languages:
Python, Java, Go, C++, JavaScript, C, C#, PHP, and Ruby. For each language, the average execution
time of code reviews for both merged and closed pull requests (PRs) is measured. The results,
presented in Figure 6, indicate that, on average, the execution time for merged PRs is longer than that

17

for closed PRs by approximately 44.92 seconds. This considerable time difference can be attributed
to several potential reasons. One primary explanation is that merged PRs likely undergo a more
rigorous and detailed review process. They are intended to be integrated into the main codebase,
and as such, contributors might be requested to update their commits in the PRs more frequently to
adhere to the project’s high-quality standards. On the other hand, closed PRs, which are not meant
for merging, might not require such extensive review processes, leading to shorter review times on
average, which may also be the reason they are not merged into main projects.

Python Java Go C++ JavaScript C C# PHP Ruby
Programming Language

200

250

300

350

400

450

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Average Execution Time with Patterns for Different Programming Languages
Category

Merged
Closed

Figure 6: Execution time with CodeAgent across different language (count unit: second).

C Comparative Analysis of QA-Checker AI System and Recursive
Self-Improvement Systems

In this section, we will delve into the differences between QA-Checker and self-improvement sys-
tems [17], and underscore the importance of the QA-Checker in role conversations.

C.1 Comparison Table

We begin with a comparative overview presented in Table 7.

C.2 Differences and Implications

The key differences between these systems lie in their application scope, learning mechanisms, and
improvement scopes. The QA-Checker is highly specialized, focusing on QA tasks with efficiency
and precision. In contrast, recursive self-improvement systems boast a broader application range
and adaptability, integrating experiences from diverse projects for systemic improvements.

C.3 Importance of QA-Checker in Role Conversations

In the context of role conversations, the QA-Checker plays a pivotal role. Its specialized nature
makes it exceptionally adept at handling specific conversational aspects, such as accuracy, relevance,

18

Table 7: Comparative Overview of QA-Checker AI System and Recursive Self-Improvement Sys-
tems

Feature/System QA-Checker AI System Recursive Self-Improvement Sys-
tem

Application Focus Specialized for QA tasks with pre-
cise task execution

Broad scope, covering various di-
mensions like software develop-
ment and learning algorithms

Learning Mechanism Advanced optimization techniques
for iterative improvement in QA

Multi-level learning: learning,
meta-learning, and recursive self-
improvement

Scope of Improvement Focused on individual capability in
specific QA tasks

Enhances the entire system, includ-
ing multi-agent interactions and
communication protocols

Experience Integration Based on mathematical models to
optimize answer quality

Utilizes experiences from past
projects to improve overall perfor-
mance

and clarity in responses. This specialization is crucial in domains where the quality of information
is paramount, ensuring that responses are not only correct but also contextually appropriate and
informative.

Furthermore, the efficiency of the QA-Checker in refining responses based on advanced optimization
techniques makes it an invaluable tool in dynamic conversational environments. It can quickly adapt
to the nuances of a conversation, providing high-quality responses that are aligned with the evolving
nature of dialogue.

C.4 Conclusion

While recursive self-improvement systems offer broad adaptability and systemic learning, the QA-
Checker stands out in its specialized role in QA tasks, particularly in role conversations. Its focused
approach to improving answer quality and its efficiency in handling conversational nuances make it
an essential component in AI-driven communication systems.

D Capabilities Analysis between CodeAgent and Other Methods

Compared to open-source baseline methods such as AutoGPT and autonomous agents such as Chat-
Dev and MetaGPT, CodeAgent offers functions for code review tasks: consistency analysis, vul-
nerability analysis, and format analysis. As shown in Table 8, our CodeAgent encompasses a wide
range of abilities to handle complex code review tasks efficiently. Incorporating the QA-Checker
self-improved module can significantly improve the conversation generation between agents and
contribute to the improvement of code review. Compared to COT, the difference and the advantages
of CodeAgent with QA-Checker are shown in Section C.

Table 8: Comparison of capabilities for CodeAgent and other approaches. ‘✓’ indicates the pres-
ence of a specific feature in the corresponding framework, ‘✗ is absence. ChatDev and MetaGPT
are two representative multi-agent frameworks, ChatGPT is a kind of single-agent framework, and
CodeBert is a representative pre-trained model.
Approaches Consistency Analysis Vulnerability Analysis Format Analysis Code Revision COT QA-Checker
ChatDev [28] ✗ ✗ ✗ ✗ ✓ ✗

MetaGPT [17] ✗ ✗ ✗ ✗ ✓ ✗

ChatGPT [26] ✓ ✓ ✓ ✓ ✗ ✗

CodeBert [12] ✓ ✓ ✓ ✓ ✗ ✗

CodeAgent ✓ ✓ ✓ ✓ ✓ ✓

19

E Dataset

Previous Dataset As shown in [44], our study incorporates three distinct datasets for evalu-
ating the performance of CodeAgent: Trans-Reviewdata, AutoTransformdata, and T5-Reviewdata.
Trans-Reviewdata, compiled by Tufano et al. [35], derives from Gerrit and GitHub projects, exclud-
ing noisy or overly lengthy comments and review data with new tokens in revised code not present
in the initial submission. AutoTransformdata, collected by Thongtanunam et al. [32] from three
Gerrit repositories, comprises only submitted and revised codes without review comments. Lastly,
T5-Reviewdata, gathered by Tufano et al. [34] from Java projects on GitHub, filters out noisy, non-
English, and duplicate comments. These datasets are employed for Code Revision Before Review
(CRB) and Code Revision After Review (CRA) tasks, with the exception of AutoTransformdata for
CRA and Review Comment Generation (RCG) due to its lack of review comments.

New Dataset Design and Collection To enhance our model evaluation and avoid data leakage, we
curated a new dataset, exclusively collecting data from repositories created after April 2023. This
approach ensures the evaluation of our CodeAgent model on contemporary and relevant data, free
from historical biases. The new dataset is extensive, covering a broad spectrum of software projects
across nine programming languages.

Merged Closed
0

100

200

300

400

500

600

700

800

Sa
m

pl
e

Co
un

t

254

803

35

213

Python
Negative
Positive

Merged Closed
0

50

100

150

200

250

Sa
m

pl
e

Co
un

t

40

247

8

89

Java
Negative
Positive

Merged Closed
0

20

40

60

80

100

Sa
m

pl
e

Co
un

t

19

114

18

56

Go
Negative
Positive

Merged Closed
0

20

40

60

80

100

Sa
m

pl
e

Co
un

t

36

102

10

46

C++
Negative
Positive

Merged Closed
0

50

100

150

200

Sa
m

pl
e

Co
un

t

45

235

11

101

JavaScript
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

14

100

20

126C
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

160

Sa
m

pl
e

Co
un

t

37

169

10

52

C#
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

Sa
m

pl
e

Co
un

t

24

149

13

92

PHP
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

160

Sa
m

pl
e

Co
un

t

32

170

10

45

Ruby
Negative
Positive

(a) Positive and negative data of both merged and
closed commits across 9 languages on CA task (Ta-
ble 1).

Merged Closed
0

200

400

600

800

Sa
m

pl
e

Co
un

t

190

867

35

213

Python
Negative
Positive

Merged Closed
0

50

100

150

200

250

Sa
m

pl
e

Co
un

t

11

276

5

92

Java
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

16

117

7

67

Go
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

19

119

5

51

C++
Negative
Positive

Merged Closed
0

50

100

150

200

250
Sa

m
pl

e
Co

un
t

28

252

7

105

JavaScript
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

Sa
m

pl
e

Co
un

t

18

96

18

128C
Negative
Positive

Merged Closed
0

25

50

75

100

125

150

175

Sa
m

pl
e

Co
un

t

29

177

5

57

C#
Negative
Positive

Merged Closed
0

20

40

60

80

100

120

140

160

Sa
m

pl
e

Co
un

t

17

156

6

99

PHP
Negative
Positive

Merged Closed
0

25

50

75

100

125

150

175

Sa
m

pl
e

Co
un

t

24

178

6

49

Ruby
Negative
Positive

(b) Positive and negative data of both merged and
closed commits across 9 languages on FA task (Ta-
ble 1).

Figure 7: Distribution of positive, negative of both merged and closed data across 9 languages,
including ‘python’, ‘java’, ‘go’, ‘c++’, ‘javascript’, ‘c’, ‘c#’, ‘php’, ‘ruby’.

Dataset Description Our dataset, illustrated in Fig. 8, encapsulates a detailed analysis of con-
sistency and format detection in software development, spanning various programming languages.
It includes CA (consistency between commit and commit message (See Table 1)) and FA (format
consistency between commit and original (See Table 1)) data, segmented into positive and nega-
tive samples based on the merged and closed status of pull requests. For example, in Python, the
dataset comprises 254 merged and 35 closed negative CA samples, alongside 803 merged and 213
closed positive CA samples, with corresponding distributions for other languages like Java, Go,
C++, and more. Similarly, the FA data follows this pattern of positive and negative samples across
languages. Figure 7 graphically represents this data, highlighting the distribution and comparison of
merged versus closed samples in both CA and FA categories for each language. This comprehensive
dataset, covering over 3,545 commits and nearly 2,933 pull requests from more than 180 projects,
was meticulously compiled using a custom crawler designed for GitHub API interactions, targeting
post-April 2023 repositories to ensure up-to-date and diverse data for an in-depth analysis of current
software development trends.

20

Python Java Go C++ JavaScript C C# PHP Ruby
0

200

400

600

800

1000
Nu

m
be

r

1057

287

133 138

280

114

206
173

202
248

97 74 56
112

146

62
105

55

Merged and Closed Issues in Different Programming Languages with Values
Merged
Closed

Figure 8: Comparative Visualization of Merged and Closed Commit Counts Across Various Pro-
gramming Languages

Table 9: Statistics of Studied Datasets.

Dataset Statistics #Train #Valid #Test
Trans-Review 13,756 1,719 1,719

AutoTransform 118,039 14,750 14,750

T5-Review 134,239 16,780 16,780

F Key Factors Leading to Vulnerabilities

The following table outlines various key factors that can lead to vulnerabilities in software systems,
along with their descriptions. These factors should be carefully considered and addressed to enhance
the security of the system.

No. Vulnerability Factor Description
1 Insufficient Input Validation Check for vulnerabilities like SQL injection,

Cross-Site Scripting (XSS), and command injec-
tion in new or modified code, especially where
user input is processed.

2 Buffer Overflows Particularly in lower-level languages, ensure that
memory management is handled securely to pre-
vent overflows.

3 Authentication and Authorization
Flaws

Evaluate any changes in authentication and autho-
rization logic for potential weaknesses that could
allow unauthorized access or privilege escalation.

4 Sensitive Data Exposure Assess handling and storage of sensitive informa-
tion like passwords, private keys, or personal data
to prevent exposure.

5 Improper Error and Exception Han-
dling

Ensure that errors and exceptions are handled ap-
propriately without revealing sensitive informa-
tion or causing service disruption.

21

6 Vulnerabilities in Dependency Li-
braries or Components

Review updates or changes in third-party libraries
or components for known vulnerabilities.

7 Cross-Site Request Forgery (CSRF) Verify that adequate protection mechanisms are in
place against CSRF attacks.

8 Unsafe Use of APIs Check for the use of insecure encryption algo-
rithms or other risky API practices.

9 Code Injection Look for vulnerabilities related to dynamic code
execution.

10 Configuration Errors Ensure that no insecure configurations or settings
like open debug ports or default passwords have
been introduced.

11 Race Conditions Analyze for potential data corruption or security
issues arising from race conditions.

12 Memory Leaks Identify any changes that could potentially lead to
memory leaks and resource exhaustion.

13 Improper Resource Management Check resource management, such as proper clo-
sure of file handles or database connections.

14 Inadequate Security Configurations Assess for any insecure default settings or unen-
crypted communications.

15 Path Traversal and File Inclusion
Vulnerabilities

Examine for risks that could allow unauthorized
file access or execution.

16 Unsafe Deserialization Look for issues that could allow the execution
of malicious code or tampering with application
logic.

17 XML External Entity (XXE) At-
tacks

Check if XML processing is secure against XXE
attacks.

18 Inconsistent Error Handling Review error messages to ensure they do not leak
sensitive system details.

19 Server-Side Request Forgery
(SSRF)

Analyze for vulnerabilities that could be exploited
to attack internal systems.

20 Unsafe Redirects and Forwards Check for vulnerabilities leading to phishing or
redirection attacks.

21 Use of Deprecated or Unsafe Func-
tions and Commands

Identify usage of any such functions and com-
mands in the code.

22 Code Leakages and Hardcoded
Sensitive Information

Look for hardcoded passwords, keys, or other sen-
sitive data in the code.

23 Unencrypted Communications Verify that data transmissions are securely en-
crypted to prevent interception and tampering.

24 Mobile Code Security Issues For mobile applications, ensure proper handling
of permission requests and secure data storage.

25 Cloud Service Configuration Errors Review any cloud-based configurations for poten-
tial data leaks or unauthorized access.

G Data Leakage Statement

As the new dataset introduced in Section E, the time of the collected dataset is after April 2023,
avoiding data leakage while we evaluate CodeAgent on codeData dataset.

H Algorithmic Description of CodeAgent Pipeline with QA-Checker

This algorithm demonstrates the integration of QA-Checker within the CodeAgent pipeline, em-
ploying mathematical equations to describe the QA-Checker’s iterative refinement process.

22

Algorithm 1 Integrated Workflow of CodeAgent with QA-Checker
Input: Code submission, commit message, original files
Output: Refined code review document
Initialize phase p = 1
while p ≤ 4 do

Switch: Phase p
Case 1: Basic Info Sync
Conduct initial information analysis
Update: p = 2
Case 2: Code Review
Perform code review with Coder and Reviewer
Update: p = 3
Case 3: Code Alignment
Apply code revisions based on feedback
Update: p = 4
Case 4: Document
Finalize review document
Update: p = 5 (End)
QA-Checker Refinement (Applies in Cases 2 and 3)
Let Qi be the current question and Ai the current answer
Evaluate response quality: qScore = Q(Qi, Ai)
if qScore below threshold then

Generate additional instruction aai
Update question: Qi+1 = Qi + aai
Request new response: Ai+1

end if
end while
Return: Refined code review document

In this algorithm, Q(Qi, Ai) represents the quality assessment function of the QA-Checker, which
evaluates the relevance and accuracy of the answer Ai to the question Qi. If the quality score qScore
is below a predefined threshold, the QA-Checker intervenes by generating an additional instruction
aai to refine the question, prompting a more accurate response in the next iteration.

I Detailed Performance of CodeAgent in Various Languages on VA task

In our comprehensive analysis using CodeAgent, as detailed in Table 11, we observe a diverse
landscape of confirmed vulnerabilities across different programming languages. The table catego-
rizes these vulnerabilities into ‘merged’ and ‘closed’ statuses for languages such as Python, Java, Go,
C++, JavaScript, C, C#, PHP, and Ruby. A significant finding is a markedly high number of ‘merged’
vulnerabilities in Python, potentially reflective of its extensive application or intrinsic complexities
leading to security gaps. Conversely, languages like Go, Ruby, and C exhibit notably lower counts
in both categories, perhaps indicating lesser engagement in complex applications or more robust se-
curity protocols. Table 11 that the ‘closed’ category consistently presents lower vulnerabilities than
‘merged’ across most languages, signifying effective resolution mechanisms. However, an exception
is noted in C, where ‘closed’ counts surpass those of ‘merged’, possibly indicating either delayed
vulnerability identification or efficient mitigation strategies. Remarkably, the Rateclose is generally
observed to be higher than Ratemerge across the languages, exemplifying a significant reduction in
vulnerabilities post-resolution. For example, Python demonstrates a Ratemerge of 14.00% against
a higher Rateclose of 18.16%. This trend is consistent in most languages, emphasizing the impor-
tance of proactive vulnerability management. The Rateavg , representing the proportion of confirmed
vulnerabilities against the total of both merged and closed items, further elucidates this point, with
C++ showing the highest Rateavg at 16.49%. These insights not only underline the diverse vulnera-
bility landscape across programming languages but also highlight the adeptness of CodeAgent in
pinpointing and verifying vulnerabilities in these varied contexts.

23

Table 11: Vulnerable problems (#) found by CodeAgent. Ratemerge means the value of confirmed
divided by the total number in the merged and Rateclose is the value of confirmed divided by the total
number in the closed. Rateavg is the value of the confirmed number divided by the total number of
the merged and closed.

CodeAgent Python Java Go C++ JavaScript C C# PHP Ruby
merged (total#) 1,057 287 133 138 280 114 206 173 202
merged (confirmed#) 148 17 11 19 34 9 21 28 20
Ratemerge 14.00% 5.92% 8.27% 13.77% 12.14% 7.89% 10.19% 16.18% 9.90%
closed (total#) 248 97 74 56 112 146 62 105 55
closed (confirmed#) 45 10 5 13 16 26 7 15 5
Rateclose 18.16% 10.31% 6.76% 23.2% 14.29% 17.81% 11.29% 14.29% 9.09%
Total number (#) 1,305 384 207 194 392 260 268 278 257
Total confirmed (#) 193 27 16 32 50 35 28 43 25
Rateavg 14.79% 7.03% 7.73% 16.49% 12.76% 13.46% 10.45% 14.47% 9.73%

J More detailed experimental results on CA and FA tasks

Detailed experimental results of CA are shown in Figure 9 and Figure 10. Detailed experimental
results of FA are shown in Figure 11 and Figure 12.

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.619

0.770

0.809

0.879

0.719

0.843
0.871

0.923

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.579

0.757

0.789

0.858

0.711

0.846
0.871

0.916

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.596

0.772

0.816

0.895

0.723

0.854

0.886

0.936

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.637

0.784

0.824

0.882

0.730

0.847

0.880

0.918

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.660

0.800

0.847

0.906

0.771

0.872

0.907

0.942

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.620

0.810

0.850

0.900

0.747

0.885
0.909

0.942

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.645

0.828

0.870

0.917

0.760

0.892
0.919

0.948

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.678

0.839

0.879

0.926

0.789

0.903
0.929

0.958

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.694

0.847

0.900

0.947

0.800

0.906

0.939
0.967

ruby
Recall
F1

Figure 9: Comparison of models on the merged data across 9 languages on CA task.

24

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.700

0.817 0.826

0.878

0.808

0.886 0.893

0.926

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.596

0.764

0.809

0.865

0.736

0.861
0.889

0.922

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.714 0.714
0.696

0.857

0.800 0.800
0.780

0.897

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.717 0.717

0.674

0.848

0.805 0.805

0.765

0.907

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.881

0.703

0.653

0.851

0.937

0.816

0.776

0.915

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.770
0.794

0.714

0.8570.866 0.862

0.811

0.915

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.635

0.808

0.885

0.846

0.750

0.884

0.929
0.907

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.696

0.761

0.935

0.859

0.810

0.854

0.966

0.919

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.711

0.622

0.800

0.844
0.821

0.757

0.867

0.905

ruby
Recall
F1

Figure 10: Comparison of models on the closed data across 9 languages on CA task.

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.729
0.709

0.759

0.900

0.826
0.802

0.857

0.942

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.609

0.717

0.819

0.899

0.755

0.834

0.899

0.947

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.615

0.658

0.795

0.897

0.750

0.790

0.882

0.946

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.714 0.714

0.908 0.899

0.825 0.825

0.931
0.947

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.687

0.726

0.857

0.897

0.807
0.836

0.911

0.944

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.667

0.708

0.750

0.896

0.790

0.824
0.852

0.945

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.729

0.655

0.887 0.898

0.832

0.781

0.918
0.944

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.724

0.686

0.647

0.897

0.834
0.805

0.783

0.946

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es 0.747
0.775

0.708

0.899

0.844
0.868

0.813

0.944

ruby
Recall
F1

Figure 11: Comparison of models on the merged data across 9 languages on FA task.

25

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.700

0.737

0.685

0.897

0.805

0.842

0.802

0.943

python
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.707

0.761 0.761

0.859

0.823

0.859 0.859

0.924

java
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.731

0.687

0.866
0.851

0.838
0.807

0.921 0.919

go
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es 0.765

0.706

0.922

0.843
0.867

0.828

0.959

0.915

c++
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.700

0.840

0.780

0.860

0.820

0.910
0.880

0.920

javascript
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.633

0.758

0.703

0.859

0.761

0.851

0.814

0.924

c
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.719

0.684

0.719

0.860
0.837

0.813
0.837

0.925

c#
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.687 0.697

0.778

0.859

0.814 0.821

0.870

0.924

php
Recall
F1

CodeBERT ChatGPT-3.5 ChatGPT-4.0 CodeAgent
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

0.796

0.755

0.694

0.857
0.876

0.860

0.819

0.923

ruby
Recall
F1

Figure 12: Comparison of models on the closed data across 9 languages on FA task.

26

K Case Study

K.1 Performance on 9 languages

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message is generally good. However, there are a few
inconsistencies that should be addressed. In the 'handle_connect' method, the 'default_info' dictionary is being updated to use
the keys 'user' and 'client' instead of 'user_id' and 'client_id' as mentioned in the commit message. It would be better to update
the commit message to reflect this change or update the code to use the original keys. Additionally, in the 'handle_refresh'
method, the check for 'is_authenticated' has been removed, which is inconsistent with the commit message. It would be helpful
to clarify the reason for this change in the commit message.

CodeAgent Summary

...

Semantic Consistency Analysis

Python

The provided code appears to have some potential security vulnerabilities that should be addressed. Firstly, there is no input
validation or sanitization for user input, which can lead to SQL injection, XSS, and command injection risks... The code should
also be reviewed for proper authentication and authorization processes, as well as the handling of sensitive data to prevent
unauthorized access and data breaches. Proper error handling and exception management should be implemented to avoid
leaking sensitive information and causing service interruptions...

Security Analysis

The format of the code is generally consistent with the writing style and format of the original file. However, there are a few
inconsistencies that could impact readability and maintainability. In the 'handle_connect' method, the indentation of the
'self.default_info' dictionary is inconsistent. It would be better to align the indentation to improve code readability. Additionally,
in the 'handle_refresh' method, the comment at the end of the line should be moved to a separate line for better code formatting.
These minor formatting issues can be easily addressed to improve the overall quality of the code.

Format Analysis

Based on the analysis, the following suggestions are provided for code alignment and revisions:1). In the 'handle_connect'
method, update the commit message to reflect the change in keys from 'user_id' and 'client_id' to 'user' and 'client'.
Alternatively, update the code to use the original keys mentioned in the commit message. 2). In the 'handle_refresh' method,
clarify the reason for removing the 'is_authenticated' check in the commit message. If it was intentional, provide an explanation
for the change. 3). Improve input validation and sanitization techniques to prevent SQL injection, XSS, and command injection
risks. Implement parameterized queries for database operations and escape user-generated content displayed in HTML. 4).
Ensure robust memory management practices to avoid buffer overflows in lower-level languages.5). Review and enhance
authentication and authorization processes, as well as the handling of sensitive data, to prevent unauthorized access and data
breaches...

Suggestion

@@ -365,8 +365,8 @@ def handle_connect(self, params):
Welcome to Centrifuge dear Connection!
self.is_authenticated = True
self.default_info = {

- 'user_id': self.user,
- 'client_id': self.uid,
+ 'user': self.user,
+ 'client': self.uid,

'default_info': info,
'channel_info': None

}
@@ -421,9 +421,6 @@ def handle_refresh(self, params):

"""
Handle request with refreshed connection timestamp
"""

- if not self.is_authenticated:
- raise Return((None, self.application.UNAUTHORIZED))
-

project_name = params["project"]
user = params["user"]
timestamp = params["timestamp"]

rename client_id and user_id into client and
user in connection info

...
class Client(object):
 """
 This class describes a single connection of
client.
 """
 application = None

 def __init__(self, sock, info):
 self.sock = sock
 self.info = info
 self.uid = uuid.uuid4().hex
 self.is_authenticated = False
 self.user = None
 self.timestamp = None
 self.channel_info = {}
 self.default_info = {}
 self.project_name = None
 self.channels = None
 self.presence_ping_task = None
 self.expire_timeout = None
...

Figure 13: Example in Python project with sha value:
“0d3b94bbd7528ed8649cdab4370a62e508bad82c"

27

Commit Original
File

Commit
Message

The code changes in the commit do not accurately reflect the description provided in the commit message. The commit message

mentions fixing an issue where onDismiss() did not get called if Snackbar is swiped, but the code changes do not address this

issue. Instead, the code changes seem to be related to dismissing the Snackbar.

@@ -403,7 +403,7 @@ public boolean canDismiss(Object token) {
 @Override
 public void onDismiss(View view, Object token) {
 if (view != null) {
- finish();
+ dismiss(false);
 }}
@@ -512,6 +512,10 @@ private void startTimer(long duration) {
 }
 public void dismiss() {
+ dismiss(mAnimated);
+ }
+
+ private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
@@ -522,7 +526,7 @@ public void dismiss() {
 mEventListener.onDismiss(Snackbar.this);
 }
- if (!mAnimated) {
+ if (!animate) {
 finish();
 return;
 }

Fixed issue where onDismiss() did not get
called if Snackbar is swiped.

...
public static Snackbar with(Context context)
{
 return new Snackbar(context);
 }

 /**
 * Sets the type of {@link Snackbar} to be
displayed.
 *
 * @param type the {@link
SnackbarType} of this instance
 * @return
 */
 public Snackbar type(SnackbarType type)
{
 mType = type;
 return this;
 }

 /**
 * Sets the text to be displayed in this
{@link Snackbar}
...

CodeAgent Summary

...

Semantic Consistency Analysis

Java

No security analysis can be performed as the code is not provided.
Security Analysis

The format of the code aligns with the writing style and format of the original file. There are no formatting inconsistencies that
impact the overall readability and maintainability of the project.

Format Analysis

The highest priority comment is regarding the semantic consistency between the code changes and the commit message. The
code changes should address the issue mentioned in the commit message, i.e., fixing the issue where onDismiss() did not get
called if Snackbar is swiped. To fix this issue, the following changes can be made:

Suggestion

Java

Java

public void dismiss() {
 dismiss(mAnimated);
}
private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
 mIsDismissing = true;
 if (mEventListener != null) {
 mEventListener.onDismiss(Snackbar.this);
 }
 if (!animate) {
 finish();
 return;
 }
}

1. In the `Snackbar` class, modify the
`dismiss()` method as follows:

2.Please make the above changes to ensure that the code aligns
with the description provided in the commit message.

...

private void startTimer(long duration) {
 // implementation
}
public void dismiss() {
 dismiss(mAnimated);
}
private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
 mIsDismissing = true;
 if (mEventListener != null) {
 mEventListener.onDismiss(Snackbar.this);
 }...

Java

Figure 14: Example in Java project with sha value: “6e3c6d17d943f5ac70b421653eb167e0c34b119f"

28

01/02/2024, 22:58 codeagent-casestudy

file:///Users/danieltang/Downloads/codeagent-casestudy.drawio (3).html 1/1

Commit Original
File

Commit
Message

Based on the provided commit message and code changes, there is a semantic inconsistency. The commit message states that
the script is being cleaned, but the code changes do not reflect any cleaning actions. To improve semantic consistency, the code
changes should align with the description provided in the commit message. I suggest revising the code to include the cleaning
actions mentioned in the commit message.

CodeAgent Summary

...

Semantic Consistency Analysis

Go

After reviewing the code, I found that there are no explicit security vulnerabilities present....

Security Analysis

The format of the code does not align with the writing style and format of the original file. Inconsistent formatting can
negatively impact the readability and maintainability of the project. To improve the format consistency, I suggest following the
original file's formatting conventions. This includes consistent indentation, proper spacing, and adhering to any specific style
guidelines.

Format Analysis

Based on the semantic inconsistency and format analysis, I recommend the following revisions:
1. Update the code changes to reflect the cleaning actions mentioned in the commit message.
2. Ensure that the code follows the formatting conventions of the original file.

Suggestion

fix: clean integration-test script

#!/usr/bin/env bash
set -e

export DEST=.

echo "Testing against..."
docker version

shellcheck disable=SC2086
shellcheck disable=SC2048
go test ./integration -test.timeout=20m -
failfast -v ${TESTFLAGS[*]}

Go

Go

@@ -3,12 +3,9 @@ set -e

 export DEST=.

-TESTFLAGS+=("-test.timeout=20m -failfast -v")
-
-cd integration
 echo "Testing against..."
 docker version

 # shellcheck disable=SC2086
 # shellcheck disable=SC2048
-go test -v ${TESTFLAGS[*]}
+go test ./integration -test.timeout=20m -failfast -v ${TESTFLAGS[*]}

#!/usr/bin/env bash
set -e
export DEST=.
echo "Testing against..."
docker version
shellcheck disable=SC2086
shellcheck disable=SC2048
go test ./integration -test.timeout=20m -failfast -v ${TESTFLAGS[*]}

Revised code

Go

Figure 15: Example in Go project with sha value: “a6b00b097b1a8140bd8b60177247dc830374c8ed"

29

Commit Original
File

Commit
Message

The code changes in the provided code are not consistent with the description provided in the commit message. The commit
message mentions the removal of the "/analytics/events/:name" endpoint, but this change is not reflected in the code. It is
important to ensure that the code accurately reflects the changes described in the commit message to avoid confusion and
potential issues.

CodeAgent Summary

...

Semantic Consistency Analysis

C++

The provided code appears to have some potential security vulnerabilities that should be addressed. Firstly, there is no input
validation or sanitization for user input, which can lead to SQL injection, XSS, and command injection risks... The code should
also be reviewed for proper authentication and authorization processes, as well as the handling of sensitive data to prevent
unauthorized access and data breaches. Proper error handling and exception management should be implemented to avoid
leaking sensitive information and causing service interruptions...

Security Analysis

The format of the code does not align with the writing style and format of the original file. There are inconsistencies in
indentation and spacing, which can impact the overall readability and maintainability of the project. It is recommended to
follow a consistent coding style throughout the codebase to improve readability and make it easier for developers to understand
and maintain the code.

Format Analysis

1. Remove the "/analytics/events/:name" endpoint as mentioned in the commit message.
2. Ensure consistent indentation and spacing throughout the code to improve readability.
3. Consider organizing the code into logical sections or modules to enhance maintainability.

Suggestion

remove end-point to get events

...
//analytics events
 server->post("/analytics/events",
post_create_event);
 server->post("/analytics/events/replicate",
post_replicate_events);
 server->get("/analytics/query_hits_counts",
get_query_hits_counts);

 // meta
 server->get("/metrics.json",
get_metrics_json);
 server->get("/stats.json", get_stats_json);
 server->get("/debug", get_debug);
 server->get("/health", get_health);
...

C++

C++

C++

@@ -83,7 +83,6 @@ void master_server_routes() {
 //analytics events
 server->post("/analytics/events", post_create_event);
 server->post("/analytics/events/replicate", post_replicate_events);
- server->get("/analytics/events/:name", get_analytics_events, false, true);
 server->get("/analytics/query_hits_counts", get_query_hits_counts);

 // meta

Figure 16: Example in C++ project with sha value: “09e88c7c20347cdf513323fa8c616aba0a1b9ea7"

30

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message is generally good. The changes accurately reflect
the description provided in the commit message. However, there is one inconsistency in the code. In the added `replaceWith`
function, there is a missing check for the `val` parameter being a function. Currently, the code assumes that `val` will always be
a function or a string. It would be better to add a check for the function type and handle it accordingly. This will ensure that the
code is more robust and can handle different types of input.

@@ -225,6 +225,22 @@ window['$'] = window['jquip'] = (function(){
 }
 return this;
 };
+ p['replaceWith'] = function(val){
+ if (isF(val)) {
+ return this['each'](function(i) {
+ var self = $(this), old = self.html();
+ self.replaceWith(val.call(this, i, old));
+ });
+ } else if (isS(val)) {
+ val = $(val).detach();
+ }
+ return this['each'](function() {
+ var next = this.nextSibling,
+ parent = this.parentNode;
+ parent.removeChild(this);
+ (next ? $(next).before(val) : $(parent).append(val));
+ });
+ };
 p['hide'] = function(){
 return this['each'](function(){
 cache(this, "display", this.style.display);

Addeed .replaceWith()

...
p['after'] = function(){
 if (this[0] && this[0].parentNode){
 return this.dm(arguments, false,
function(el){
 this.parentNode.insertBefore(el,
this.nextSibling);
 });
 }
 return this;
 };
 p['replaceWith'] = function(val){
 if (isF(val)) {
 return this['each'](function(i) {
 var self = $(this), old = self.html();
 self.replaceWith(val.call(this, i, old));
 });
 } else if (isS(val)) {
 val = $(val).detach();
 }
...

CodeAgent Summary

...

Semantic Consistency Analysis

Javascript

The security analysis of the provided code reveals some potential vulnerabilities. The code does not validate user input, which
can lead to SQL injection, XSS, and command injection risks. It is crucial to implement input validation and sanitization
techniques to prevent these vulnerabilities....

Security Analysis

The format of the code aligns with the writing style and format of the original file. There are no formatting inconsistencies that
impact the overall readability and maintainability of the project. The code follows a consistent indentation style and uses
appropriate naming conventions. However, it is recommended to add comments to explain the purpose and functionality of
complex code sections to improve code understandability.

Format Analysis

1. In the `replaceWith` function, add a check for the `val` parameter being a function and handle it accordingly.
2. Implement input validation and sanitization techniques to prevent SQL injection, XSS, and command injection risks.
3. Improve error handling mechanisms to avoid sensitive information leakage and service interruptions.
4. Review the code for any deprecated functions, hardcoded sensitive data, or code leakages.
5. Add comments to explain the purpose and functionality of complex code sections.

Suggestion

window['$'] = window['jquip'] = (function(){
 var win = window,
 queryShimCdn = "http://cdnjs.cloudflare.com/ajax/libs/sizzle/1.4.4/sizzle.min.js",
 queryEngines = function(){ return win["Sizzle"] || win["qwery"]; },
 doc = document, docEl = doc.documentElement,
 scriptFns=[], load=[], sLoaded,
 runtil = /Until$/, rmultiselector = /,/,
 rparentsprev = /^(?:parents|prevUntil|prevAll)/,
 rtagname = /<([\w:]+)/,
...

Revised Code

Figure 17: Example in JavaScript project with sha value:
“6e9a80d93b470aef4978677ed0b7c9996fddbe20"

31

Commit Original
File

Commit
Message

Based on the provided code and commit message, the semantic consistency analysis reveals that the changes in the code
accurately reflect the description provided in the commit message. There are no inconsistencies or potential hidden malicious
code identified.

@@ -757,9 +757,9 @@ <h4>

 <footer class="main-footer">
 <div class="pull-right hidden-xs">
- <b id="plugson_build_date">20231014 18:52:12
+ <b id="plugson_build_date">20231014 18:52:12
 </div>
- <a href="https://www.ventoy.net"
target="_blank">https://www.ventoy.net
+
 </footer>

 <!-- Control Sidebar -->

remove ventoy.net in grub UI

...
 <footer class="main-footer">
 <div class="pull-right hidden-xs">
 <b
id="plugson_build_date">20231014
18:52:12
 </div>

 </footer>

 <!-- Control Sidebar -->
 <!-- /.control-sidebar -->
 <!-- Add the sidebar's background. This
div must be placed
 immediately after the control sidebar --
>
 <div class="control-sidebar-bg"
style="position: fixed; height: auto;"></div>

 </div>
 <!-- ./wrapper -->
...

CodeAgent Summary

...

Semantic Consistency Analysis

C

The security analysis of the provided code reveals several potential vulnerabilities. Firstly, there is no validation of user input,
which can lead to SQL injection, XSS, and command injection risks. It is recommended to implement proper input validation
and sanitization techniques to prevent these vulnerabilities. Additionally, the code does not handle errors and exceptions
properly, which can result in sensitive information leakage and service interruptions...

Security Analysis

The format analysis reveals that the code formatting is inconsistent with the writing style and format of the original file. This
inconsistency can impact the overall readability and maintainability of the project. It is recommended to align the code
formatting with the original file's style and format to improve code quality.

Format Analysis

1. Implement input validation and sanitization techniques to prevent SQL injection, XSS, and command injection risks.
2. Improve error handling mechanisms to avoid sensitive information leakage and service interruptions.
3. Review the code for any deprecated functions, hardcoded sensitive data, or code leakages.
4. Conduct a thorough review of all dependencies, APIs, and configurations, including third-party libraries
5. Align the code formatting with the writing style and format of the original file to improve code quality and maintainability.

Suggestion

C

C

C

Figure 18: Example in C project with sha value: “5f93cf43dd6f809d7927abb79884285ad77e8a58"

32

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message is generally good. The code changes accurately
reflect the description provided in the commit message. However, there is one inconsistency in the code. In the
`InitializeKernel` method, the `_logger` field is changed from `ILoggerFactory` to `XunitLogger<Kernel>`. The commit
message does not mention this change, which could lead to confusion for other developers. It is recommended to update the
commit message to include this change.

@@ -148,7 +148,7 @@ private Kernel InitializeKernel()

 private readonly RedirectOutput _testOutputHelper;
 private readonly IConfigurationRoot _configuration;
- private readonly ILoggerFactory _logger;
+ private readonly XunitLogger<Kernel> _logger;

 public void Dispose()
 {

change logger to concrete type

...
builder.AddOpenAIChatCompletion(
 modelId:
openAIConfiguration.ModelId,
 apiKey:
openAIConfiguration.ApiKey);

 var kernel = builder.Build();

 return kernel;
 }

 private readonly RedirectOutput
_testOutputHelper;
 private readonly IConfigurationRoot
_configuration;
 private readonly XunitLogger<Kernel>
_logger;
...

CodeAgent Summary

...

Semantic Consistency Analysis

C#

The security analysis of the provided code reveals several potential vulnerabilities. Firstly, there is no validation of user input to
prevent SQL injection, XSS, and command injection risks. ..

Security Analysis

The format of the code aligns well with the writing style and format of the original file. There are no significant formatting
inconsistencies that impact the overall readability and maintainability of the project.

Format Analysis

In the `InitializeKernel` method, the `_logger` field should be updated to use the concrete type `XunitLogger<Kernel>`
instead of the abstract type `ILoggerFactory`. This change should be reflected in the commit message as well.

Suggestion

C#

C#

C#

Figure 19: Example in C# project with sha value: “0e231c7a81b318e9eade972f7b877e66128ed67d"

33

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message seems to be accurate. The changes made in the
code align with the description provided in the commit message. There are no inconsistencies or potential hidden malicious
code identified in this aspect.

...function get_posts($args = null) {
@@ -2425,6 +2425,7 @@ function get_posts($args = null) {
 'meta_value' => '',
 'post_type' => 'post',
 'suppress_filters' => true,
+ 'get_post_meta' => false
);
 $parsed_args = wp_parse_args($args, $defaults);
@@ -2449,7 +2450,20 @@ function get_posts($args = null) {
 $parsed_args['no_found_rows'] = true;

 $get_posts = new WP_Query();
- return $get_posts->query($parsed_args);
+ $get_posts = $get_posts->query($parsed_args);
+
+ if (!empty($parsed_args['get_post_meta'])) {
+ foreach ($get_posts as $post) {
+ $post_meta = [];
+ foreach (get_post_meta($post->ID) as $key => $value) {
+ $post_meta[$key] = $value[0];}
+ $post->meta_data = $post_meta;
+ $get_posts[] = $post;
+ }
+ };
+
+ return $get_posts;
 }

add get_post_meta args to get_posts()

...
function get_posts($args = null) {
 $defaults = array(
 'numberposts' => 5,
 'category' => 0,
 'orderby' => 'date',
 'order' => 'DESC',...
);
 $parsed_args = wp_parse_args($args,
$defaults);
 if (empty($parsed_args['post_status'])) {
 $parsed_args['post_status'] = (
'attachment' === $parsed_args['post_type']) ?
'inherit' : 'publish';
 }
 if (! empty($parsed_args['numberposts'])
&& empty($parsed_args['posts_per_page'])
) {
 $parsed_args['posts_per_page'] =
$parsed_args['numberposts'];
 }
...

CodeAgent Summary

...

Semantic Consistency Analysis

PHP

The provided code requires a comprehensive security review to identify potential vulnerabilities. The analysis should focus on
the following areas:......Based on the provided code, it is difficult to perform a comprehensive security analysis. However, it is
recommended to conduct a thorough security review considering the above points to identify any potential vulnerabilities.

Security Analysis

The format of the code does not align with the writing style and format of the original file. There are inconsistencies in
indentation, spacing, and line breaks. These formatting inconsistencies can impact the overall readability and maintainability of
the project. It is recommended to follow a consistent coding style and use proper indentation and spacing throughout the
codebase.

Format Analysis

1. In the `get_posts` function, the `get_post_meta` argument is not aligned properly with the other arguments.
It should be aligned with the other arguments for better readability.
2. In the `get_posts` function, the `get_posts` variable is overwritten with a new value.
It is recommended to use a different variable name to avoid confusion.
3. In the `get_posts` function, the code block inside the `if` condition can be
simplified by using a dictionary comprehension. Instead of manually iterating
 over `get_post_meta`, you can use a dictionary comprehension to create the `post_meta` dictionary.

Suggestion

PHP

PHP

PHP

Figure 20: Example in PHP project with sha value: “6679f059b9a0972a90df198471188da652f5c547"

34

Commit Original
File

Commit
Message

The semantic consistency between the code changes and the commit message seems to be accurate. The changes made in the
code align with the description provided in the commit message. There are no inconsistencies or potential hidden malicious
code identified in this aspect.

...function get_posts($args = null) {
@@ -2425,6 +2425,7 @@ function get_posts($args = null) {
 'meta_value' => '',
 'post_type' => 'post',
 'suppress_filters' => true,
+ 'get_post_meta' => false
);
 $parsed_args = wp_parse_args($args, $defaults);
@@ -2449,7 +2450,20 @@ function get_posts($args = null) {
 $parsed_args['no_found_rows'] = true;

 $get_posts = new WP_Query();
- return $get_posts->query($parsed_args);
+ $get_posts = $get_posts->query($parsed_args);
+
+ if (!empty($parsed_args['get_post_meta'])) {
+ foreach ($get_posts as $post) {
+ $post_meta = [];
+ foreach (get_post_meta($post->ID) as $key => $value) {
+ $post_meta[$key] = $value[0];}
+ $post->meta_data = $post_meta;
+ $get_posts[] = $post;
+ }
+ };
+
+ return $get_posts;
 }

add get_post_meta args to get_posts()

...
function get_posts($args = null) {
 $defaults = array(
 'numberposts' => 5,
 'category' => 0,
 'orderby' => 'date',
 'order' => 'DESC',...
);
 $parsed_args = wp_parse_args($args,
$defaults);
 if (empty($parsed_args['post_status'])) {
 $parsed_args['post_status'] = (
'attachment' === $parsed_args['post_type']) ?
'inherit' : 'publish';
 }
 if (! empty($parsed_args['numberposts'])
&& empty($parsed_args['posts_per_page'])
) {
 $parsed_args['posts_per_page'] =
$parsed_args['numberposts'];
 }
...

CodeAgent Summary

...

Semantic Consistency Analysis

PHP

The provided code requires a comprehensive security review to identify potential vulnerabilities. The analysis should focus on
the following areas:......Based on the provided code, it is difficult to perform a comprehensive security analysis. However, it is
recommended to conduct a thorough security review considering the above points to identify any potential vulnerabilities.

Security Analysis

The format of the code does not align with the writing style and format of the original file. There are inconsistencies in
indentation, spacing, and line breaks. These formatting inconsistencies can impact the overall readability and maintainability of
the project. It is recommended to follow a consistent coding style and use proper indentation and spacing throughout the
codebase.

Format Analysis

1. In the `get_posts` function, the `get_post_meta` argument is not aligned properly with the other arguments.
It should be aligned with the other arguments for better readability.
2. In the `get_posts` function, the `get_posts` variable is overwritten with a new value.
It is recommended to use a different variable name to avoid confusion.
3. In the `get_posts` function, the code block inside the `if` condition can be
simplified by using a dictionary comprehension. Instead of manually iterating
 over `get_post_meta`, you can use a dictionary comprehension to create the `post_meta` dictionary.

Suggestion

PHP

PHP

PHP

Figure 21: Example in Ruby project with sha value: “584f72e7f4c65066ccbd2183af76bf380b6eb974"

35

K.2 Difference of CodeAgent-3.5 and CodeAgent-4.0

CodeAgent-3.5 and CodeAgent-4.0 in this paper has no difference in general code review, how-
ever, as CodeAgent-4.0 is more powerful in processing long input sequences and logic reasoning.
As shown in Figure 22, we take one example of consistency detection between commit and com-
mit message and find that CodeAgent-4.0 diffs from CodeAgent-3.5 in the detailed explanation.
CodeAgent-3.5 output a report with 15k lines while CodeAgent-4.0 outputs a report with more
than 17.7k lines. Detailed data is shown in https://zenodo.org/records/10607925.

36

https://zenodo.org/records/10607925

02/02/2024, 00:22 codeagent-casestudy

file:///Users/danieltang/Downloads/codeagent-casestudy.drawio (5).html 1/1

Commit Original
File

Commit
Message

The code changes in the commit do not accurately reflect

the description provided in the commit message. The

commit message mentions fixing an issue where

onDismiss() did not get called if Snackbar is swiped, but

the code changes do not address this issue. Instead, the

code changes seem to be related to dismissing the

Snackbar.

@@ -403,7 +403,7 @@ public boolean canDismiss(Object token) {
 @Override
 public void onDismiss(View view, Object token) {
 if (view != null) {
- finish();
+ dismiss(false);
 }}
@@ -512,6 +512,10 @@ private void startTimer(long duration) {
 }
 public void dismiss() {
+ dismiss(mAnimated);
+ }
+
+ private void dismiss(boolean animate) {
 if (mIsDismissing) {
 return;
 }
@@ -522,7 +526,7 @@ public void dismiss() {
 mEventListener.onDismiss(Snackbar.this);
 }
- if (!mAnimated) {
+ if (!animate) {
 finish();
 return;
 }

Fixed issue where onDismiss() did not get called if Snackbar
is swiped.

...
public static Snackbar with(Context context) {
 return new Snackbar(context);
 }

 /**
 * Sets the type of {@link Snackbar} to be displayed.
 *
 * @param type the {@link SnackbarType} of this instance
 * @return
 */
 public Snackbar type(SnackbarType type) {
 mType = type;
 return this;
 }

 /**
 * Sets the text to be displayed in this {@link Snackbar}
...

Semantic Consistency Analysis

Java

No security analysis can be performed as the code is not
provided.

Security Analysis

The format of the code aligns with the writing style and
format of the original file. There are no formatting
inconsistencies that impact the overall readability and
maintainability of the project.

Format Analysis

The highest priority comment is regarding the semantic
consistency between the code changes and the commit
message. The code changes should address the issue
mentioned in the commit message, i.e., fixing the issue
where onDismiss() did not get called if Snackbar is swiped.
To fix this issue, the following changes can be made:

Suggestion

Java

Java

655 lines

CodeAgent-3.5CodeAgent-3.5 CodeAgent-4.0

The commit message states "Fixed issue where onDismiss() did not get called if

Snackbar is swiped." The code changes reflect this accurately. The

`onDismiss()` method has been modified to call `dismiss(false)`, which will

dismiss the Snackbar without animation when it is swiped. A new `dismiss()`

method has also been added which takes a boolean parameter to determine

whether to animate the dismissal or not. The changes in the code are consistent

with the commit message.

Semantic Consistency Analysis

The provided code does not seem to have any security vulnerabilities. It does
not handle any user input directly, so there is no risk of SQL injection, XSS, or
command injection. It does not use any lower-level languages, so buffer
overflows are not a concern. The code does not manage any sensitive data, so
there is no risk of unauthorized access or data breaches. The code does not use
any third-party libraries, so there are no potential vulnerabilities from
dependencies. The code does not have any deprecated functions, hardcoded
sensitive data, or code leakages. However, this is a preliminary analysis and a
more thorough review would be needed to confirm these findings

Security Analysis

The format of the code aligns with the writing style and format of the original
file. The code uses the same indentation, naming conventions, and comment
style as the original file. There are no formatting inconsistencies that would
impact the readability or maintainability of the project.

Format Analysis

The code changes are well-aligned with the rest of the codebase. The new
`dismiss()` method follows the same naming conventions and style as the
existing methods. The changes to the `onDismiss()` method are minimal and
maintain the original structure of the method. No revisions are necessary.

Suggestion

Figure 22: Comparison of code review between CodeAgent-3.5 and CodeAgent-4.0 on one Java
project with sha value: “6e3c6d17d943f5ac70b421653eb167e0c34b119f"

L Ablation study

In this section, we evaluate the performance of different parts in CodeAgent in vulnerability anal-
ysis. CodeAgent is based on chain-of-thought (COT) and large language model (a.k.a. ChatGPT).
As shown in Section 5.1, CodeAgent outperforms baselines (a.k.a. CodeBERT, ChatGPT-3.5,

37

ChatGPT-4.0) across 9 different languages. The performance mainly comes from the combination
of COT and QA-Checker. Thus, we design an additional version called CodeAgent w/o, which
means CodeAgent without QA-Checker. Then, we use CodeAgent w/o to do vulnerability anal-
ysis and compare with CodeAgent. We first discuss about the result of CodeAgent w/o and then
discuss about comparison between CodeAgent and CodeAgent w/o.

Overview of Vulnerabilities in CodeAgent w/o Table 12 presents the findings of CodeAgent
w/o, a variant of the original CodeAgent, in identifying vulnerabilities across different program-
ming languages. The table showcases the number of ‘merged’ and ‘closed’ vulnerabilities in lan-
guages such as Python, Java, Go, C++, JavaScript, C, C#, PHP, and Ruby. Notably, Python leads in
the ‘merged’ category with a total of 1,057 cases, of which 140 are confirmed, yielding a Ratemerge

of 13.25%. In contrast, languages like Go and Ruby show lower vulnerability counts in both
‘merged’ and ‘closed’ categories. The table also includes Rateclose and Rateavg , providing insights
into the effectiveness of vulnerability management across these languages.

Detailed Comparison between CodeAgent and CodeAgent w/o Comparing the findings in
Table 12 with those in Table 11, we observe some notable differences in vulnerability detection
by CodeAgent and CodeAgent w/o. While the overall trend of higher ‘merged’ vulnerabilities
in Python and lower counts in Go and Ruby remains consistent, Table 12 shows a slight reduc-
tion in the Ratemerge for most languages, suggesting a more conservative confirmation approach in
CodeAgent w/o. Similarly, Rateclose and Rateavg values in Table 12 generally indicate a lower
proportion of confirmed vulnerabilities compared to Table 11, reflecting potentially different crite-
ria or efficacy in vulnerability assessment. These variations highlight the impact of QA-Checker in
CodeAgent.

Table 12: Vulnerable problems (#) found by CodeAgent w/o

CodeAgent Python Java Go C++ JavaScript C C# PHP Ruby
merged (total#) 1,057 287 133 138 280 114 206 173 202
merged (confirmed#) 140 17 10 12 28 9 21 28 17
Ratemerge 13.25% 5.92% 7.52% 8.70% 10.00% 7.89% 10.19% 16.18% 8.42%
closed (total#) 248 97 74 56 112 146 62 105 55
closed (confirmed#) 36 9 5 12 16 26 7 15 5
Rateclose 14.52% 9.28% 6.76% 21.43% 14.29% 17.81% 11.29% 14.29% 9.09%
Total number (#) 1,305 384 207 194 392 260 268 278 257
Total confirmed (#) 176 26 15 24 44 35 28 43 22
Rateavg 13.49% 6.77% 7.25% 12.37% 11.22% 13.46% 10.45% 15.47% 8.56%

M Tool

We develop a website for CodeAgent, which is shown in Figure 23, and it is also accessable by
visiting following link:

https://code-agent-new.vercel.app/index.html

38

https://code-agent-new.vercel.app/index.html

Figure 23: website of CodeAgent

39

	Introduction
	Tasks and Definition
	CodeAgent
	Role Card Definition
	Pipeline
	Self-Improving CoT with QA Checker

	Experimental Design
	Datasets
	Metrics
	State-of-the-Art Tools and Models

	Experimental Result Analysis
	Vulnerability Analysis
	Consistency and Format Detection
	Code Revision

	Related Work
	Conclusion
	Impact Statement
	Acknowledgments
	Complete Related Work
	Experimental Details
	Role Definition
	Execute Time Across Languages

	Comparative Analysis of QA-Checker AI System and Recursive Self-Improvement Systems
	Comparison Table
	Differences and Implications
	Importance of QA-Checker in Role Conversations
	Conclusion

	Capabilities Analysis between CodeAgent and Other Methods
	Dataset
	Key Factors Leading to Vulnerabilities
	Data Leakage Statement
	Algorithmic Description of CodeAgent Pipeline with QA-Checker
	Detailed Performance of CodeAgent in Various Languages on VA task
	More detailed experimental results on CA and FA tasks
	Case Study
	Performance on 9 languages
	Difference of CodeAgent-3.5 and CodeAgent-4.0

	Ablation study
	Tool

