
You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code

WEIGUO PIAN
†
, University of Luxembourg, Luxembourg

YINGHUA LI
†
, University of Luxembourg, Luxembourg

HAOYE TIAN
∗
, University of Melbourne, Australia

TIEZHU SUN, University of Luxembourg, Luxembourg
YEWEI SONG, University of Luxembourg, Luxembourg
XUNZHU TANG, University of Luxembourg, Luxembourg
ANDREW HABIB, University of Luxembourg, Luxembourg
JACQUES KLEIN, University of Luxembourg, Luxembourg
TEGAWENDÉ F. BISSYANDÉ, University of Luxembourg, Luxembourg

Learning to edit code automatically is becoming more and more feasible. Thanks to recent advances in Neural
Machine Translation (NMT), various case studies are being investigated where patches are automatically
produced and assessed either automatically (using test suites) or by developers themselves. An appealing
setting remains when the developer must provide a natural language input of the requirement for the code
change. A recent proof of concept in the literature showed that it is indeed feasible to translate these natural
language requirements into code changes. A recent advancement, MODIT [8], has shown promising results
in code editing by leveraging natural language, code context, and location information as input. However,
it struggles when location information is unavailable. While several studies [29, 81] have demonstrated the
ability to edit source code without explicitly specifying the edit location, they still tend to generate edits with
less accuracy at the line level. In this work, we address the challenge of generating code edits without precise
location information, a scenario we consider crucial for the practical adoption of NMT in code development. To
that end, we develop a novel joint training approach for both localization and source code editions. Building a
benchmark based on over 70k commits (patches and messages), we demonstrate that our jLED (joint Localize
and EDit) approach is effective. An ablation study further demonstrates the importance of our design choice
in joint training.

CCS Concepts: • Software and its engineering → Software verification and validation; Software defect
analysis; Software testing and debugging.

Additional Key Words and Phrases: Source Code Edition, Joint Learning, Automated Programming, Neural
Machine Translation
†Equal contribution.
∗Corresponding author.

Authors’ Contact Information: Weiguo Pian, weiguo.pian@uni.lu, University of Luxembourg, Luxembourg; Yinghua
Li, yinghua.li@uni.lu, University of Luxembourg, Luxembourg; Haoye Tian, tianhaoyemail@gmail.com, University of
Melbourne, Australia; Tiezhu Sun, tiezhu.sun@uni.lu, University of Luxembourg, Luxembourg; Yewei Song, yewei.song@uni.
lu, University of Luxembourg, Luxembourg; Xunzhu Tang, xunzhu.tang@uni.lu, University of Luxembourg, Luxembourg;
Andrew Habib, andrew.a.habib@gmail.com, University of Luxembourg, Luxembourg; Jacques Klein, jacques.klein@uni.lu,
University of Luxembourg, Luxembourg; Tegawendé F. Bissyandé, tegawende.bissyande@uni.lu, University of Luxembourg,
Luxembourg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-735X/2025/1-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Pian and Li et al.

ACM Reference Format:

Weiguo Pian, Yinghua Li, Haoye Tian, Tiezhu Sun, Yewei Song, Xunzhu Tang, Andrew Habib, Jacques Klein,
and Tegawendé F. Bissyandé. 2025. You Don’t Have to Say Where to Edit! jLED – Joint Learning to Localize
and Edit Source Code. J. ACM 1, 1 (January 2025), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Code editing [45, 51] is a critical and continuous activity in the realm of software development.
As software systems expand in size and complexity, developers undertake a multitude of edits to
maintain and enhance their functionality. These edits may include bug fixes [15, 34, 62, 77], feature
additions [43, 44, 46], or performance improvements [41]. Nevertheless, a significant portion of
code editing across various projects is repetitive or similar in practice, which results in decreased
efficiency in software development [52]. Therefore, researchers are motivated to devise automated
approaches that can facilitate code editing by learning from historical examples [45, 46].

Approaches based on Neural Machine Translation (NMT) have demonstrated remarkable success
in the realm of automated code editing. NMT is a type of machine learning approach that uses the
sequence-to-sequence [57] architecture to predict the target sequence based on the source sequence
of words or tokens, which is commonly used to translate sentences from one language to another,
or to generate answers from questions. In the context of code editing, the process refers to the
translation of source code to targeted code. Contrasting to traditional machine translation methods
that translate words or phrases in isolation, NMT models the entire context of a sentence or even a
paragraph to produce a nuanced translation [74]. Leveraging this capability, literatures [8, 40, 78]
have successfully adapted NMT models to comprehend code semantics and generate more accurate
and contextually relevant edits by leveraging multiple modalities of information relevant to code
editing, such as the context, natural language guidance, test cases, etc.
Despite the achievements, NMT-based approaches face a substantial obstacle in real-world

applications: Several studies [29, 81] show the capability to edit source code without explicitly
specifying the edit location, they however tend to generate edits at locations with less accuracy at
the line level. Consequently, NMT struggles to edit code effectively within a broad context without
the knowledge of the exact edit location. Chakrabortyet al. [8] investigated the contribution of
different input modalities to the performance of their proposed NMT model. The findings indicate
a considerable decline in performance when the edit location remains unknown to the NMT model.
This however hinders the adoption of the NMT-based code edit approaches to practical scenarios.

Motivation example. To further illustrate our motivation, we present a motivation example in
Figure 1 generated by fine-tuned CodeReviewer models [29]. In this example, we show that when
the model is trained and inferred without line-level location information, it generates the edit that
corresponds to the inaccurate location. Conversely, when the location information is explicitly
provided, the model is able to generate a more accurate edit corresponding to the precise line
location.
This example highlights the importance of explicitly providing precise location information to

the model during training and inference. However, in real-world code editing scenarios, the exact
edit location is often unavailable, making it impractical to rely on explicitly provided edit locations.
To address this challenge, leveraging a localization model to predict the edit location could improve
the editing accuracy of the code edit model. Nevertheless, imperfect location predictions can harm
the edit generation process—potentially leading the model to edit irrelevant lines, for which we
will discuss in Section 5.5 and 5.6, where we show that using the localization model’s predicted
results as direct input to the editing model does not yield satisfactory performance. A potential
approach to tackle this problem is the recent multi-task frameworks, which have been proven
effective in software engineering tasks by using one task as a "soft constraint" for another [31–33].

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 3

Don't open code task_pid in kvm_vcpu_ioctl.

struct pid *oldpid;
r = -EINVAL;
if (arg) goto out;
oldpid = rcu_access_pointer(vcpu->pid);
Line to edited
- if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
Ground truth
+ if (unlikely(oldpid != task_pid(current))) {
Edit result generated by the model trained and inferred with location information.
+ if (unlikely(oldpid != get_task_pid(current, PIDTYPE_PID))) {
Edit result generated by the model trained and inferred without location information.
+ newpid = get_task_pid_noauto(current, PIDTYPE_PID);

struct pid *newpid;
r = kvm_arch_vcpu_run_pid_change(vcpu);
if (r) break;

Inaccurate line location
newpid = get_task_pid(current, PIDTYPE_PID);
rcu_assign_pointer(vcpu->pid, newpid);
if (oldpid) synchronize_rcu();
put_pid(oldpid);

}
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);

Fig. 1. Motivation example.

By leveraging the parameter-sharing mechanism of multi-task learning, these approaches facilitate
knowledge transfer between tasks [5, 54] through learning more generalizable features that are
relevant to all tasks. Additionally, different optimization targets can perform as regularization terms
for one another [35], further improving the generalization of the model on each task. Moreover,
a recent work [38] also shows the insight of leveraging the program repair/refinement task to
improve a model’s fault localization capabilities, further motivating us to explore the latent semantic
relationship between code editing and localization tasks, enabling the model to generate more
accurate code edits without explicitly relying on precise location information. More specifically,
in our code editing scenario, the training process of the edit target and the localization target are
related but not strictly dependent, creating an opportunity to use one as a guiding signal to enhance
the performance of the other. This approach avoids imposing strict dependencies while promoting
mutual benefits in training both the editing and localization tasks.
This paper. We propose to jointly optimize the two loss functions of edit location and code

edition in NMT models, towards producing an integrated approach to enable precise localization
and edition of source code without the knowledge of exact edit locations. The main contributions
are as follows:

❶ Our paper introduces jLED (jointly Localize and EDit), a novel supervised learning approach
designed to enable the practical application of code editing without the need for edit location.
jLED leverages large-scale language models to uniformly localize and edit source code.

❷ We conduct comprehensive experiments to evaluate the performance changes by employing
different modalities for sequence-to-sequence editing baselines.

❸ After collecting a large dataset of 77,044 edited code samples from two famous GitHub projects –
Linux andWireshark, we extensively evaluate the effectiveness of jLED to localize and edit source
code. The results demonstrate our tool jLED outperforms or achieves competitive performance
when compared against the localizing and editing baselines, using five different large pre-trained
code models trained with our pipeline.

❹ To further evaluate the effectiveness of our proposed joint learning pipeline, we construct a
two-stage localization-editing pipeline, in which a localization model and an editing model are

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

4 Pian and Li et al.

trained separately. We conduct experiments for ablation study with a two-stage pipeline, and
experimental results further demonstrate the superiority of our proposed joint learning pipeline.

Availability.Our artifact, code, and dataset are publicly available at: https://github.com/weiguoPian/
Code_Edit_Joint_Learning.

The remainder of this paper is presented as follows. Section 2 introduces the background of this
work. In Section 3, we present our methodology with detailed explanations. Section 4 and 5 cover
the experimental design and results. We provide discussions and related work in Section 6 and 7.
Section 8 concludes this work.

2 BACKGROUND

2.1 Neural Machine Translation

Neural Machine Translation (NMT) has emerged as a promising approach in the field of machine
translation, exhibiting well performance in automating language translation tasks [8]. By lever-
aging deep neural networks, NMT models are capable of learning and generating translations
in an end-to-end manner, thereby overcoming the limitations of traditional statistical machine
translation methods. At its core, NMT comprises two fundamental components: the encoder and the
decoder, which work synergistically to facilitate the translation process. The encoder component
plays a crucial role in comprehending and processing the input sentence, utilizing sophisticated
neural architectures to generate a vector representation that encapsulates the underlying semantic
meaning of the source text. This vector representation serves as a rich and comprehensive rep-
resentation of the source sentence, enabling the subsequent translation process to leverage the
encoded information effectively. The decoder component, on the other hand, capitalizes on the
encoded input representation to sequentially generate the target sentence through a process of
logical reasoning.

In recent years, the field of Software Engineering (SE) has witnessed a broad range of applications
for NMT. Notably, NMT has found utility in areas such as Automatic Program Repair [22, 40, 76],
Program Synthesis [79], and Code Edit Generation [67, 68]. These applications capitalize on NMT’s
ability to comprehend and generate intricate patterns, making it a valuable tool for SE-related tasks.
The integration of NMT in software engineering research highlights its potential to enhance various
aspects of software development, offering new avenues for improving program understanding,
code generation, and automated repair.

2.2 Transformer Model for Sequence Processing

Transformer model [70] has emerged as a highly influential and prominent model for sequence
processing tasks within the field of natural language processing (NLP), leading to numerous
state-of-the-art achievements [3, 73]. Prior to the advent of the Transformer, recurrent neural
networks (RNNs) and their variants, such as long short-term memory (LSTM) and gated recurrent
units (GRUs), were conventionally utilized for sequence processing tasks. While RNNs showcased
commendable performance, they encountered challenges in parallelization and capturing long-
range dependencies adequately. To overcome these limitations, the Transformer model introduced a
novel self-attention mechanism, enabling selective attention to different parts of the input sequence
through adaptive weighting. This mechanism played a pivotal role in capturing dependencies
between distinct positions within the sequence, facilitating parallel processing of the input. During
the token representation learning phase, the Transformer model learned to attend to all input
tokens, transforming the sequence into a comprehensive graph where each token represented a
node. The edge weights in this graph denoted the attention weights between tokens, which were
learned based on the specific task at hand. Additionally, positional encoding was incorporated

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/weiguoPian/Code_Edit_Joint_Learning
https://github.com/weiguoPian/Code_Edit_Joint_Learning

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 5

into the Transformer model to encode the position of each token in the sequence, facilitating
the learning of long-range dependencies. The Transformer’s ability to reason about long-range
dependencies has proven to be highly advantageous for various source code processing tasks,
including code generation [58] and code summarization [2].

2.3 Transfer Learning for Source Code

Transfer learning [72] has emerged as a prominent research direction in the domain of software
engineering (SE) due to its potential to address various SE tasks effectively. In SE, transfer learning
involves the creation of task-agnostic representations of source code, which can be leveraged and
repurposed across different tasks. One prevalent approach to obtain such task-agnostic representa-
tions entails pre-training models using a large corpus of source code. During the pre-training phase,
the primary objective is to enhance the model’s understanding of code or its ability to generate
accurate code. By leveraging a substantial collection of source code, a pre-trained model is expected
to encapsulate valuable code-related knowledge within its learnable parameters. Subsequently,
these pre-trained models are fine-tuned to adapt to specific task objectives.
Several transformer-based encoder models have been developed to facilitate pre-training for

comprehending source code. Notable examples include CodeBERT [13] and GraphCodeBERT [16].
CodeBERT [13] focuses on learning continuous representations of code snippets, enabling a deeper
understanding of their structural and contextual aspects. GraphCodeBERT [16] incorporates the
data-flow graph modeling into the masked token pre-training process of the BERT model to
capture code dependencies and interactions, facilitating higher-level reasoning and tasks such
as code completion and refactoring. In the context of code generation, two prominent models
are CodeGPT [39] and PLBART [1]. CodeGPT pre-trains a transformer-based model specifically
designed for sequentially generating general-purpose code. More recently, PLBART introduced
a joint pre-training approach that encompasses both code understanding and code generation,
utilizing denoising auto-encoding. PLBART consists of an encoder and a decoder, where the encoder
is exposed to slightly perturbed code, while the decoder is responsible for producing code without
such perturbations.

3 Approach

In this section, we delve into a detailed presentation of our proposed approach. Figure 3 illustrates
the pipeline of our jLED. The overall pipeline is composed of three primary components: input
pre-processing, model architecture, and the optimization objective. Note that, during the inference
phase, the optimization objective is replaced by an output generation module. In the pre-processing
stage, we concatenate different parts/modalities, converting them into a token sequence for input.

3.1 Input Modalities, Data Collection and Pre-processing

As we mentioned before, since we may not know the exact line-level location in which the line
content should be edited, it is not in practice to provide the exact line-level location information as
a part of the input of the model. Therefore, in our setting, the model can only take natural language
guidance and code context (a multiple lines code fragment) as input. We use G and C to denote the
natural language guidance and the code context respectively, and we follow the setting in [8] to
use a special token <s> to split the two modalities G and C.

For the data collection process, we construct the dataset using a series of git commands: git show,
git diff, and git checkout, targeting the retrieval of code changes across different versions. Specifically,
we focus on extracting the differences that represent single-line edits and their associated commit
messages, constituting a single dataset sample. This approach ensures that each sample captures
a specific code modification scenario, accompanied by the developer’s intent as expressed in the

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

6 Pian and Li et al.

Don't open code task_pid in kvm_vcpu_ioctl.

struct pid *oldpid;
r = -EINVAL;
if (arg) goto out;
oldpid = rcu_access_pointer(vcpu->pid);
- if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
+ if (unlikely(oldpid != task_pid(current))) {

struct pid *newpid;
r = kvm_arch_vcpu_run_pid_change(vcpu);
if (r) break;
newpid = get_task_pid(current, PIDTYPE_PID);
rcu_assign_pointer(vcpu->pid, newpid);
if (oldpid) synchronize_rcu();
put_pid(oldpid);

}
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);

make buddy table static. Idea is to reduce false cacheline sharing and stuff.

static int cntlz(u32 value);
static int cnttz(u32 word);
static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno, int nblocks);
static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
static int dbInitDmapTree(struct dmap * dp);
static int dbInitTree(struct dmaptree * dtp);
static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
static int dbGetL2AGSize(s64 nblocks);
- static s8 budtab[256] = {
+ static const s8 budtab[256] = {

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

}

Fig. 2. Two illustrative examples of our collected dataset.

commit message. Afterward, to maintain the quality and relevance of our dataset, we apply stringent
filtering criteria, in which samples are excluded if the single-line change pertains solely to comments
rather than code content. This decision is based on our goal which focuses on code editing that
potentially affects software behavior and performance. By filtering out comment-only changes, we
aim to enhance the model’s learning of code syntax and semantics. For each sample, it includes
not only the line to be edited but also contextual code lines surrounding the edit. This context,
encompassing lines before and after the target line, is crucial to create a scenario for localizing the
code line to be edited before generating edits. Finally, we remove the blank lines in each sample to
get the clean ones, and get the final location line number to be edited.

In the Pre-processing step, we then apply the tokenizer to tokenize the input into sequences of
tokens. For the tokenizer, we follow Chakraborty et al. [8] and use the sentence-piece tokenizer [26]
in all our experiments, which divides each token into sequences of subtokens. In our implementation,
we apply their original pre-trained sentence-piece tokenizer to different pre-trained models used in
our training pipeline. Finally, the tokenized sequence is generated after the data pre-processing as
the input of the model. Figure 2 presents two illustrative examples of the collected dataset.

3.2 Models

Recently, there has been a significant surge in interest of Transformer-based [70] code models [48,
49, 84] in fields of code representation learning and software engineering. These models, especially
pre-trained large code models [1, 13, 16, 39, 71], attract lots of attention due to their superior

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 7

Predicted
Line

Predicted
Edit

Ground-
Truth Line

Ground-
Truth Edit

Localization Loss

Editing Loss

Training

Inference

...
if(tree)

temp_item = proto_tree...
if(new_items)

*new_items = temp_item;
if(s && length)

*s = string;
else if(length)

g_free(string)
...

Fix a memory leak problem.

Modality 1: Code snippet

Modality 2: Guidance

Input Modalities

Models

Inference

CodeBERT

Model

weights

weights

output

Localize and
Edit

...
if(tree) </s>
temp_item = proto_... </s>
if(new_items)
...
<s>
Fix the memory leak
problem.

Pre-processing

Concatenate modalities

..._if _(_tree _)... <s>
_fix _a _memory _leak...<s>

Tokenize

GraphCodeBERT

CodeGPT

PLBART

CodeT5

…

output

Optimization

Fig. 3. Overview of our jLED pipeline.

performance and generalizability, proving to be highly advantageous for various research topics
in software engineering [6, 19–21, 42, 61, 63, 65]. Inspired by this, we also apply the pre-trained
large code models in our approach, which can be divided into three categories: encoder pre-
trained code models, decoder pre-trained code models, and encoder-decoder pre-trained code
models. Specifically, the representative encoder pre-trained code models include CodeBERT [13]
and GraphCodeBERT [16], while one of the most representative decoder pre-trained models is
CodeGPT [39]. Recently, researchers also explored the ability of pre-trained encoder-decoder
models in the field of code representation learning and proposed the pre-trained encoder-decoder
code models PLBART [1] and CodeT5 [71]. In the rest of this subsection, we introduce the details
of these pre-trained models’ architecture.
The basic component of the large code models is the encoder-decoder architecture, a powerful

sequence-to-sequence deep learning architecture, which has been widely used in text-to-text task,
text-to-code task, code-to-text, and code-to-code (our task) tasks. Note that, in our experiments,
all the models used in our proposed jLED are based on the encoder-decoder architecture, except
CodeGPT which is a decoder-only model. We will discuss it later.

Encoder. Encoder is the first part of the encoder-decoder architecture, which is used for encoding
the pre-processed input subtokens sequence (see last subsection for details) into the semantic
feature space to obtain the representation of the input sequence. For an 𝐿𝑒 -layers encoder model,
the 𝑙-𝑡ℎ layer’s output feature can be denoted as:

𝑿 𝑙
𝑒 = F 𝑙

𝑒 (𝑿 𝑙−1
𝑒 ;𝑾 𝑙

𝑒),
s.t. 𝑿 𝑙−1

𝑒 = {𝒙𝑙−11 , 𝒙𝑙−12 , ..., 𝒙𝑙−1𝑛 }
(1)

where𝑿 𝑙−1
𝑒 = {𝒙𝑙−11 , 𝒙𝑙−12 , ..., 𝒙𝑙−1𝑛 } denotes the intermediate feature of the input subtokens sequence,

and 𝒙𝑙−1𝑖 ∈ R𝑑 and 𝑑 are the intermediate representation of the 𝑖-𝑡ℎ subtoken generated by the 𝑙-𝑡ℎ
encoder layer and the length of the intermediate representation of each subtoken, respectively.
Note that, we use 𝑿0

𝑒 = {𝒙0
1, 𝒙

0
2, ..., 𝒙

0
𝑛} to represent the original input subtokens sequence. F 𝑙

𝑒 ,
parameterized by the learnable weights𝑾 𝑙

𝑒 , is the 𝑙-𝑡ℎ layer of the encoder model. For an 𝐿-layers
encoder model, the final output of the encoder model can be denoted as 𝑿𝐿

𝑒 ∈ R𝑛×𝑑 , which will be
used as the input of the decoder model to generate the prediction (target sequence, code edits in
our task), as well as the input of the localization branch of our proposed pipeline. In the rest of this
paper, we simply use 𝒁 and 𝑿 to denote 𝑿𝐿

𝑒 and 𝑿0
𝑒 respectively, and use F𝑒 and𝑾𝑒 to denote the

entire encoder model and its trainable parameters.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

8 Pian and Li et al.

Pretrained
Bidirectional Encoder

<s> If (first ... }

first == null ; </s>

<s>

Input

Output

Decoder Trained
From Scratch

(a) Encoder pre-trained encoder-decodermodels’ architecture—Consists of bidirectional

pre-trained encoder and a decoder trained from scratch.

first == null ; </s>

<SEP>

Input

Output

<SEP>if (first ... ;

<s>

Pretrained Left-to-Right Decoder

(b) Decoder-only pre-trained models’ architecture — One pre-trained single decoder

processes the input and output sequentially from left to right.

Pretrained
Bidirectional Encoder

<s> If (first ... }

first == null ; </s>

<s>

Input

Output

Pretrained Left-to-Right
Decoder

(c) Joint encoder-decoder pre-trained models’ architecture — Consists of pre-trained

bidirectional encoder and pre-trained left to right decoder.

Fig. 4. Schematic diagram [8] of the three types of pre-trained models: (a) Encoder pre-trained encoder-

decoder models, (b) Decoder-only pre-trained models, and (c) Joint encoder-decoder pre-trained models.

Decoder. Decoder is another part of the encoder-decoder architecture, which aims to decode the
representation generated by the encoder, to the target output subtokens sequence. In sequence-to-
sequence tasks, the decoder generates subtokens sequentially using the encoder generated global
representation and previous decoder generated subtokens. For the 𝑛-th subtoken’s generation, the
decoder takes previously generated subtokens and the encoder generated representation/hidden

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 9

states as the input, to predict the next subtoken. This process can be denoted as:

𝒖𝑛 =F𝑑 (𝑼𝑛−1,𝒁 ;𝑾𝑑),
s.t. 𝑼𝑛−1 = {𝒖0, 𝒖1, 𝒖2, ..., 𝒖𝑛−1},

(2)

where F𝑑 denotes the decoder model with learnable parameters𝑾𝑑 . 𝒖𝑖 denotes the 𝑖-th output
subtoken. Please note that, 𝒖0 is a special token that indicates the start of output generation.
Note that, for decoder-only models, e.g. CodeGPT [39], due to the lacking of encoder part,

when generate the 𝑛-th subtoken 𝒖𝑛 , the model only takes 𝑼𝑛−1 as input without the intermediate
representation 𝒁 in the modeling process, which can be represented as:

𝒖𝑛 =F𝑑 (𝑼𝑛−1;𝑾𝑑),
s.t. 𝑼𝑛−1 = {𝒖0, 𝒖1, 𝒖2, ..., 𝒖𝑛−1},

(3)

Based on above encoding and decoding processes, models inference with encoder-decoder architec-
ture (encoder pre-trained models and encoder-decoder pre-trained models), e.g. CodeBERT [13],
GraphCodeBERT [16], PLBART [1], and CodeT5 [71], in code editing task can be denoted as:

𝒖𝑛 =F𝑑 (𝑼𝑛−1,𝒁 ;𝑾𝑑),
s.t. 𝑼𝑛−1 = {𝒖0, 𝒖1, 𝒖2, ..., 𝒖𝑛−1}, 𝒁 = F𝑒 (𝑿 ;𝑾𝑒),

(4)

Similarly, the code editing task in decoder-only pre-trained model, e.g. CodeGPT [39], can be
expressed as:

𝒖𝑛 =F𝑑 ([𝑿 , 𝑼𝑛−1];𝑾𝑑),
s.t. 𝑼𝑛−1 = {𝒖0, 𝒖1, 𝒖2, ..., 𝒖𝑛−1},

(5)

We use the pre-processed subtokens sequence (see last subsection for details) as the input of the
model. In this subsection, we introduce the details of the models that can be used in our approach.
In summary, Equation 4 and 5 present the edits generation process in the code editing task.

However, as we mentioned before, in real-world code editing, given a code chunk/snippet, we
usually don’t know the exact line location where we should edit. That is, the modality of the content
of the code line that to be edited, is unknown. In this situation, since the model does not learn
where to be edited in the given code chunk/snippet, as well as the content to be edited, existing
standard end-to-end sequence-to-sequence training/fine-tuning strategy is inadequate for enabling
the model to generate precise code edits. To tackle this problem, we propose jLED, a joint training
strategy to allow the model to learn to localize and edit simultaneously, in which the localization
task can be used to facilitate the editing generation process for unknown edit locations. In the
following subsection, we introduce the details of our proposed jLED.

3.3 Optimization

In this subsection, we introduce the details of our proposed joint training loss function for our
jLED.

3.3.1 Editing Loss. The first component of our final loss function is the editing loss, serving as the
optimization target to minimize the distance (loss score) between the generated edits (sequence of
output subtokens) and the ground truth edits. The editing loss can be denoted as:

L𝑒𝑑𝑖𝑡 = E𝑿∼D
[𝐿∑︁
𝑖=1

L𝐶𝐸 (𝒖𝑖 ,𝒚𝑖)
]
, (6)

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

10 Pian and Li et al.

where D denotes the training set, 𝒚𝑖 is the 𝑖-th subtoken in the ground-truth subtoken sequence
(ground truth edits) Y, 𝐿 is the maximum length of the output sequence, and L𝐶𝐸 is the cross-
entropy loss function.

3.3.2 Localization Loss. Localization loss aims to guide the model to learn the exact line-level
location that to be edited given a natural language description and associated code context. To
predict the location line number, a predictor P(·;𝜽𝑝) with learnable parameters 𝜽𝑝 is added on the
top layer of the model. The predictor takes the hidden state generated by the model from the input
sequence as its input, to output the predicted location line number.

Specifically, in the encoder-decodermodels, e.g.CodeBERT [13], GraphCodeBERT [16], PLBART [1],
and CodeT5 [71], the predictor takes the encoder generated representation 𝒁 as the input and
output the predicted location line number, which is used to calculate the localization loss with the
ground truth location line number. This process can be denoted as:

L𝑙𝑜𝑐. = E𝑿∼D
[
L𝐶𝐸 (P(𝒁 ;𝜽𝑝), 𝒍)

]
, (7)

where 𝒍 denotes the ground location line number where to be edited.
Similarly, for decoder-only models, e.g. CodeGPT [39], the predictor takes the decoder generated

hidden states of the input sequence as its input to generate the line number prediction, which can
be presented as:

L𝑙𝑜𝑐. = E𝑿∼D
[
L𝐶𝐸 (P(F𝑑 (𝑿 ;𝑾𝑑);𝜽𝑝), 𝒍)

]
, (8)

3.3.3 Joint Loss Function. Finally, the editing loss and the localization loss are combined as the
joint loss function, which is denoted as:

L 𝑗𝑜𝑖𝑛𝑡 = L𝑒𝑑𝑖𝑡 + 𝜆L𝑙𝑜𝑐., (9)

where 𝜆 is the hyperparameter to balance the values of the editing loss and localization loss.
Incorporating a joint loss function, the model benefits from two optimization targets: localization
and editing. The localization target enables the model to pinpoint the specific line number requiring
edits, thus refining its focus during the edit generation process. Simultaneously, the editing training
target further guides the model to accurately identify these line numbers. Owing to this synergistic
training framework, the model is capable of generating highly accurate edits even when the exact
line locations within the source code are unknown.

3.4 Inference

After the training process described in the previous sections, the trained model will be utilized to
predict edits based on the pre-processed and tokenized subtoken sequence. Following a similar
approach to the training process mentioned earlier, the model will generate another sequence
of subtokens representing the predicted edits. These predicted edits will be used to calculate
evaluation metrics and generate the post-editing code context. This process can also be expressed
by Equations 4 and 5.

4 Experimental Design

4.1 Dataset

Considering that existing fine-tuning datasets [29, 69] for code editing contain a significant pro-
portion of input data samples that are small (no more than five lines), a model fine-tuned on such
datasets may not be able to effectively cope with the challenge of editing source code with multiple
lines input. Therefore, we construct a new large-scale dataset, in which each sample contains a
number of lines from 10 to 20. Our collected datasets contains (1) source code context before edited,

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 11

(2) natural language description, (3) line-level edits location (line number), and (4) the ground-truth
edits. Our dataset is collected from two famous GitHub projects – Linux and Wireshark. There
are a total of 77,044 samples in the dataset. More specifically, 66,044, 5,500, and 5,500 samples for
training, evaluation, and testing, respectively. For each sample in the dataset, it contains (1) a source
code snippet with several lines as the code context, (2) a natural language description of the editing
purpose as the natural language guidance, (3) a line number as the editing location, and (4) the
ground-truth edits. Each of the sample is generated by using the git command to extract the code
change, commit message, and the original code file before editing. Table 1 presents the statistics of
the dataset.

Table 1. Statistic of the dataset

Split Training Validation Testing

Sample # 66,044 5,500 5,500

Avg. code snippet tokens # 201.68 201.89 203.49

Avg. edit tokens # 17.86 17.95 18.26

4.2 Data Preparation

For our collected dataset described in Section 4.1, we follow the pre-processing method described
in Section 3.1 to pre-process each sample in the dataset by concatenating the source code context
C and the associated natural language guidance G as an input data sample [C <s>G] where <s>
denotes the special token for splitting different modalities, and apply the tokenizer to tokenize
each input data sample to generate the input subtoken sequence 𝑿 . In the modality of source code
context C, we add another special token </s> to the end of each code line for splitting different
lines of the source code context. In this way, the model is able to know how many lines in the
source code context C as well as the exact start and end position of each line. Then, we extract
each sample’s ground-truth edit as the editing label Y and the location line to be edited as the
localization label 𝒍 .

4.3 Training

After the preparation of each data point in the dataset, i.e. concatenating each sample’s source
code context C and the associated natural language guidance G into [C <s>G] as the input, and
extracting each sample’s ground-truth edit and the location line to be edited as the editing label
Y and the localization label 𝒍 . We apply the processed dataset to train and evaluate the models.
To evaluate the performance of our proposed joint training under the scenario of editing source
code using natural language guidance but without knowing the exact line location to be edited,
we conduct experiments with various well-known and most used pre-trained models fine-tuned
on our dataset, including encoder pre-trained encoder-decoder models, such as CodeBERT [13]
and GraphCodeBERT [16], joint encoder-decoder pre-trained models, such as PLBART [1] and
CodeT5 [71], and pre-trained decoder-only models, such as CodeGPT [39]. We train the model
with our joint training pipeline, using the Adam [25] optimizer with the learning rate of 5e-5. As
described before, both editing loss and localization loss are implemented by the cross-entropy loss
function. We train each model to convergence, and use the beam search to generate output edits
during inference (validation and testing). For all models, we set the balance hyperparameter 𝜆 to
0.1 during training. We implement the training and inference pipeline with Pytorch [47], and use
the pre-trained parameters from Hugging Face.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

12 Pian and Li et al.

4.4 Evaluation Metric

We use the BLEU score and Top-1 accuracy as the evaluation metric to evaluate the performance of
the editing results. For Top-1 accuracy of the editing results, we follow the settings in the previous
work [8], in which the beam size is set to 5, and then, only the generated edits that perfectly match the

ground-truth edits are correct. This setting allows the most stringent metric for evaluation [8]. For
the evaluation of the localization results, we also apply the Top-1 accuracy and the Top-5 accuracy
as the evaluation metric. For the Top-1 accuracy in localization, the line number with the highest
probability score in the line-aware probability distribution is considered as the predicted localization
result to match the ground-truth localization label 𝒍 . For the Top-5 accuracy in localization, the
prediction is considered as correct if any of our model’s Top-5 highest probability prediction
matches with the ground-truth localization label 𝒍 .

4.5 ResearchQuestions

Different from the previous code editing approach, i.e., MODIT [8], we consider a more practical
code editing scenario, in which the exact location to be edited is unknown (the first modality
in the input of MODIT [8]). To evaluate the performance of the existing standard sequence-to-
sequence training with multi-modalities, i.e. training pipeline in the paper of MODIT [8], we firstly
conduct experiments by training different large pre-trained code models on this state-of-the-art
multi-modalities training pipeline [8] under our considered more practical setting, i.e., only with
the modalities of the source code context (C) and the natural language guidance (G). Then, we
conduct experiments by training different large pre-trained code models with our proposed joint
training pipeline. Our research questions are as follows:
RQ-1. How do the models perform when trained on a standard sequence-to-sequence

multi-modalities training pipeline with only modalities of the source code context and

the natural language guidance?

RQ-2. How does our joint training pipeline (jLED) perform compared to the baseline?

RQ-3.Howdoes our joint training pipeline performcompared to the two-stage localization-

editing pipeline?

5 Experimental Results

✍ RQ-1 ▶ How do the models perform when trained on standard sequence-to-sequence multi-

modalities training pipeline with only modalities of the source code context and the natural language

guidance? ◀

5.1 Experimental Setup for RQ-1

In our first research question, we aim to evaluate the performance of the standard sequence-to-
sequence training (i.e., only using the editing loss in Equation 6 as the training loss function)
with multi-modalities (source code context S and natural language guidance G). We name these
trained models as baselines. To evaluate the performance of the baselines, we carefully choose
the most representative and common pre-trained code models, including encoder pre-trained
encoder-decoder models, decoder-only pre-trained models, and joint encoder-decoder pre-trained
models. For the encoder pre-trained encoder-decoder models, we select CodeBERT [13] and Graph-
CodeBERT [16] in our pipeline. For the decoder-only pre-trained models, we train a CodeGPT [39]
model. And for the joint encoder-decoder pre-trained models, we apply the most used PLBART [1]
and CodeT5 [71] , and recent proposed pre-trained code editing/reviewing models CoditT5 [81]
and CodeReviewer [29], as the model to be trained in our approach. The description of the chosen
models is as follows:

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 13

• CodeBERT: CodeBERT is a pre-trained code model based on the BERT architecture [10].
CodeBERT is pre-trained on a large-scale source code dataset using the pre-training scheme
of RoBERTa [36]. CodeBERT is the first large pre-trained NL-PL model for both natural
language and source code modeling.

• GraphCodeBERT: GraphCodeBERT [16] is a large pre-trained code model based on the
BERT architecture [10]. Different from CodeBERT which uses the pre-training strategy of
RoBERTa [36] only on context information (masked language modeling), GraphCodeBERT
also applies pre-training approaches on the data-flow graph, i.e., cross code-graph variable-
alignment and data flow edge prediction.

• CodeGPT: CodeGPT is a decoder-only source code model, which is based on the GPT
architecture and pre-trained on the source code context. Similar to the GPT, CodeGPT is also
trained with the autoregressive manner.

• PLBART: PLBART is a joint encoder-decoder pre-trained model based on the BART [27]
architecture, and pre-trained with the denoising sequence-to-sequence strategy.

• CodeT5: CodeT5 is a joint encoder-decoder pre-trained model with the same model archi-
tecture of T5 [50], and pre-trained using the text-to-text training strategy as described in
T5 [50].

• CoditT5:CoditT5 is a recent pre-trainedmodel for code editing based the T5 [50] architecture.
• CodeReviewer: CodeReviewer is a recent pre-trained model for code reviewing based the
T5 [50] architecture.

We train the above described baselines on the training set of our dataset, and evaluate the
performance of them. During the training process, we pre-process the data using the same method
described in Section 3.1 and 4.2 and generate the input data as [C <s> G], where <s> is the
special token for splitting different modalities, C and G denote the source code context information
and the natural language guidance respectively. For the baselines, as described before, they are
the existing standard sequence-to-sequence multi-modalities training pipeline for source code
editing, therefore, their training objective only contains an editing loss (Equation 6). Further, we
also conduct experiments by training models under the setting in previous work of multi-modalities
training for source code editing [8], in which the content of the code line to be edited is also
included in the input as another modality. In this way, the input becomes [E <s> C <s> G],
where E denotes the content of the code line to be edited. The experimental results of three fully
input modalities can be seen as the upper bound of the results of with only source code context and
natural language guidance modalities.

5.2 Experimental Results for RQ-1

The experimental results for RQ-1 are shown in Table 2, where we present the BLEU score and the
Top-1 accuracy of different models’ results on the testing set with input modalities of [C <s> G]
and [E <s> C <s> G] respectively. From the table, we can see that all the models’ performance
drops significantly after removing the content of the line to be edited (i.e., after removing E).
Specifically, compared to training with all three modalities, the CodeBERT drops 15.45 and 11.29
for BLEU score and Top-1 accuracy respectively. For GraphCodeBERT, the results of trained with
[C <s> G] decrease by 13.42 and 10.60 for BLEU and Top-1 accuracy respectively, compared to
training with the modalities of [E <s> C <s> G]. For the decoder-only model CodeGPT, it drops
by 20.25 and 14.42 for BLEU score and Top-1 accuracy respectively when trained without the
modality of the content of the line to be edited E. For the joint encoder-decoder pre-trained models
PLBART and CodeT5, compared to training with all three modalities, when trained with only the

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

14 Pian and Li et al.

Table 2. Experimental results of different models trained with all three modalities ([E <s> C <s> G])
and with only the modalities of source code context (C) and natural language guidance (G).

Model Modalities BLEU Top-1 Acc.

CodeBERT
[C <s> G] 50.32 41.95

[E <s> C <s> G] 65.77 53.24

GraphCodeBERT
[C <s> G] 52.58 43.38

[E <s> C <s> G] 66.00 53.98

CodeGPT
[C <s> G] 44.25 38.58

[E <s> C <s> G] 64.50 53.00

PLBART
[C <s> G] 52.20 45.45

[E <s> C <s> G] 67.89 57.36

CodeT5
[C <s> G] 56.85 50.87

[E <s> C <s> G] 68.41 59.75

CoditT5
[C <s> G] 55.57 49.71

[E <s> C <s> G] 69.20 60.33

CodeReviewer
[C <s> G] 57.99 52.65

[E <s> C <s> G] 70.86 62.82
modalities of source code context and natural language guidance, the BLEU scores decrease by
15.69 and 11.56 respectively, and the Top-1 accuracy of them drops by 11.91 and 8.88 respectively.

This phenomenon can be explained as follows: (i) The models do not know where to edit in the
source code context, therefore, compared to the upper bound, the models trained with [C <s> G]
lacks more information that would help generate the exact edits. (ii) During the training process,
the models do not learn how to localize the line-level location where it is to be edited.

Based on these results, we can conclude that the models do not perform well when trained with
only the modalities of source code context (C) and natural language guidance (G), since the models
cannot capture the information that is associated to the ground-truth edits directly, and the models
also do not learn knowledge and abilities to help themselves localize the line-level location that is to
be edited from the given source code context (C) and the natural language guidance (G). Therefore,
the answer to the RQ-1 appears:

✍ Answer 1 ▶ Under a more practical setting, in which only the source code context C and

the natural language guidance G can be used to generate edits, standard sequence-to-sequence

multi-modalities training pipeline is not enough for models to learn to generate accurate edits, since

no more additional knowledge and abilities have been learned to help the model localize and edit

exact code line. ◀

To improve the performance of the models under this more practical scenario, in which only
the source code context (C) and the natural language guidance (G) are available, we propose to
train the models with the joint optimization target to enable the model learning both editing and
localization abilities. To evaluate the effectiveness of our proposed approach, we investigate the
next research question:

✍ RQ-2 ▶ How does our jLED perform compared to the baseline? ◀

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 15

Table 3. Experimental results of different models trained with only the modalities of source code context

(C) and natural language guidance (G) as input. All the models use only editing loss to train the editing

baseline models, use only localization loss to train the localization baseline models, and use our joint loss

function to train models for joint localization and editing.

Model Modality Training target
Editing results Localization results

BLEU Top-1 Acc. Top-1 Acc. Top-5 Acc.

CodeBERT [C <s> G]
Editing Baseline 50.32 41.95 - -

Localization Baseline - - 62.09 79.78

jLED (Ours) 55.15 46.58 62.62 78.76

GraphCodeBERT [C <s> G]
Editing Baseline 52.58 43.38 - -

Localization Baseline - - 74.91 88.24
jLED (Ours) 55.71 47.20 74.96 89.34

CodeGPT [C <s> G]
Editing Baseline 44.25 38.58 - -

Localization Baseline - - 53.75 84.80
jLED (Ours) 49.90 42.71 62.49 85.28

PLBART [C <s> G]
Editing Baseline 52.20 45.45 - -

Localization Baseline - - 66.85 83.89
jLED (Ours) 54.78 48.84 70.09 86.62

CodeT5 [C <s> G]
Editing Baseline 56.85 50.87 - -

Localization Baseline - - 77.29 88.93
jLED (Ours) 61.08 55.20 77.07 89.33

CoditT5 [C <s> G]
Editing Baseline 55.57 49.71 - -

Localization Baseline - - 74.15 88.22
jLED (Ours) 58.76 52.56 73.16 89.15

CodeReviewer [C <s> G]
Editing Baseline 57.99 52.65 - -

Localization Baseline - - 72.75 89.38
jLED (Ours) 61.23 55.64 72.38 89.93

5.3 Experimental Setup for RQ-2

In the second research question, we aim to evaluate the performance of our proposed jLED. In
the experiments of RQ-2, we select same pre-trained models used in the experiments of RQ-1,
that are CodeBERT [13], GraphCodeBERT [16], CodeGPT [39], PLBART [1], and CodeT5 [71].
For the description of these models, please refer to Section 5.1 for details. For each model, we
train two baselines, which are the editing baseline and localization baseline respectively. More
specifically, the editing baseline, i.e. the [C <s> G] parts of Table 2 in RQ-1, takes the modalities
of source code context (C) and natural language guidance (G) as the input ([C <s> G]), and uses
the editing loss in Equation 6 as the loss function to train the model. During inference, the editing
baseline can generate the predicted edit, therefore, the evaluation metrics BLEU score and Top-1
accuracy can be used to evaluate the performance of the model. For the localization baseline, it
also takes [C <s> G] as the input, and uses the localization loss in Equation 7 (for CodeBERT,
GraphCodeBERT, PLBART, and CodeT5) or Equation 8 (for CodeGPT) as the loss function to train
the model. During the inference process of localization baselines, models output the predicted
line-level position to be edited, i.e., predicted line number. Then, we use the Top-1 and Top-5
accuracy to evaluate the predicted line-level position.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

16 Pian and Li et al.

5.4 Experimental results for RQ-2

The experimental results for RQ-2 are presented in Table 3, where we show the BLEU score and
the Top-1 accuracy of models’ editing baselines and jLED (ours), and we also show the Top-1 and
Top-5 accuracy of different models’ localization baselines and jLED (ours). As described before, in
all the experiments for RQ-2, all the models’ editing baselines, localization baselines, and jLED take
the modalities of [C <s> G] as input.

Our experimental results presented in Table 3 offer a wealth of insights into the performance of
our approach, jLED, compared to various baselines across multiple metrics. Most notably, jLED
consistently outshines all the editing baselines in both BLEU score and Top-1 accuracy, irrespective
of the underlying model architecture.
Specifically, when integrated with CodeBERT, jLED yields a significant uplift of 4.83 and 4.63

in BLEU score and Top-1 accuracy, respectively. GraphCodeBERT’s performance also receives
considerable boosts of 3.13 and 3.82 in BLEU and Top-1 metrics, reinforcing jLED’s adaptability
across different coding paradigms. The improvements are not merely incremental but substantial,
highlighting jLED’s generalization capabilities across different models.

Similarly, our jLED improves the editing baseline of CodeGPT by 5.65 and 4.13 for BLEU score
and Top-1 accuracy. For PLBART, jLED also boost the editing baseline by 5.65 and 4.13 for both
metrics, further signifying its cross-model efficacy. CodeT5’s performance also escalates, with
gains of 5.23 and 4.33 in BLEU score and Top-1 accuracy, underscoring the versatility of jLED in
adapting to varied model architectures and optimization landscapes.

On the other hand, with the assistance of the editing loss, the model can also localize the editing
position more precisely compared to the localization baseline which is trained with only the
localization loss. Specifically, compared to the localization baselines, the Top-1 accuracy improves
by 0.53, 0.05, 8.74, and 3.24 for CodeBERT, GraphCodeBERT, CodeGPT, and PLBART respectively.
For the Top-5 accuracy, the GraphCodeBERT, CodeGPT, PLBART, and CodeT5 outperform their
localization baselines by 1.10, 0.48, 2.73, and 0.40, respectively. This suggests that jLED doesn’t
merely generate more precise edits, but also benefits the localization process, which is crucial for
practical implementation.

In summary, these results demonstrate that our jLED enablesmodels to acquire greater knowledge
and abilities in localizing editing locations within the code context. This acquired knowledge and
these abilities help the models focus on more precise potential editing locations when generating
edits, leading to the production of more accurate edits. Additionally, learning to generate edits
can also help the models learn to localize the editing position line more accurately. This also
substantiates jLED’s superior performance and adaptability across different model architectures
and evaluation metrics. Whether in terms of edit quality or location precision, jLED consistently
advances the state-of-the-art, making it a robust solution for automated code editing tasks.

Therefore, based on these experimental results and findings, we can conclude the answer to the
RQ-2 as:

✍ Answer 2 ▶ Compared to the baselines, our jLED pipeline enables the models to learn additional

knowledge and abilities regarding to localizing the editing location. Therefore, given only the

modalities of source code context C and natural language guidance G, the models, which are

trained by our jLED pipeline, can pay more attention to the potential editing location, so that

yielding more precise and location-related edits. ◀

✍ RQ-3 ▶ How does our joint training pipeline perform compared to the two-stage localization-

editing pipeline? ◀

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 17

1. Context
2. Guidance

Input Modalities

M
o
d
e
l
s

Predicted
Line

Ground-Truth
Line

Localization Loss

weights

output

Localization
Model

Input Modalities

P
r
e
-
p
r
o
c
e
s
s
i
n
g

M
o
d
e
l
s

weights

output
predicted

Edit
Ground-Truth

Edit

Editing Loss

Localize

P
r
e
-
p
r
o
c
e
s
s
i
n
g

1. Context
2. Guidance
3. Content of
Ground-Truth
Code Line

1. Context
2. Guidance

Input Modalities
P
r
e
-
p
r
o
c
e
s
s
i
n
g

Editing
Model

Edit

Training

Inference

1. Training of Localization Model 2. Training of Editing Model

1.Context
2. Guidance

3. Content of
Predicted Code

Line

Merge
&

Input

Fig. 5. Overview of the two-stage localization-editing pipeline.

5.5 Experimental Setup for RQ-3

Based on the experiments of RQ-2, we prove that our proposed joint training approach performs
better than the baseline, since it enables the models to learn more knowledge and abilities in
localizing editing locations with the additional localization loss. This also proves that it is crucial for
models to know locations before editing. However, there also is another manner that can provide
models with some location information (predicted locations) except the joint training manner,
that is, the two-stage localization-editing pipeline (we simply call it the two-stage pipeline in
the rest of this paper). The overview of the two-stage pipeline is shown in Figure 5. During the
training process of the two-stage pipeline, we first train the model with the modalities of source
code context (C) and natural language guidance (G) as input ([C <s> G]), which is trained using
only the localization loss (Equation 7 or 8) as the optimization target (same with the localization
baseline in RQ-2). We name it as the localization model in the two-stage pipeline. Then, we train
another model with the input of [E𝐺𝑇 <s> C <s> G], where E𝐺𝑇 denotes the content of the
ground-truth code line to be edited. This model is named as an editing model in the two-stage
pipeline, optimized using the editing loss (Equation 6). During inference, given a sample with the
modalities of code context (C) and natural language guidance (G), the trained localization model is
used to predict the line-level location, which can be used to inquire the corresponding line-level
content in the code context C. We use E𝑝𝑟𝑒𝑑 to denote the inquired line-level content. After that,
we concatenate the predicted line-level content to be edited (E𝑝𝑟𝑒𝑑), the source code context (C),
and the natural language guidance (G) as the multimodal input [E𝑝𝑟𝑒𝑑 <s> C <s> G] of the
trained editing model, to generate the predicted edits. Finally, we use the BLEU score and the Top-1
accuracy as the evaluation metrics for the generated edits. For the choice of the localization and
editing models, we use the same settings in the experiments of RQ-1 and RQ-2, i.e., CodeBERT [13],
GraphCodeBERT [16], CodeGPT [39], PLBART [1], and CodeT5 [71].

5.6 Experimental results for RQ-3

The experiments results of RQ-3 are presented in Table 4, wherewe show the evaluation results of the
two-stage training approach and our joint training approach regarding CodeBERT, GraphCodeBERT,
CodeGPT, PLBART, and CodeT5 respectively. From the table, we can see that, for all the models,
our proposed joint training outperforms the two-stage training approach significantly. Specifically,
for CodeBERT, our approach outperforms the two-stage method by 7.20 and 4.93 for BLEU score
and Top-1 accuracy respectively. For GraphCodeBERT, our approach improves the two-stage
approach by 10.09 and 10.16 for BLEU score and Top-1 accuracy. For CodeGPT, compared to
the two-stage approach, our joint training has the improvement of 9.10 and 6.06 for BLEU score

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

18 Pian and Li et al.

Table 4. Experimental results of different models trained with our joint training approach and the two-stage

approach.

Model Approach BLEU Top-1 Acc.

CodeBERT
Two-stage 47.95 41.65
jLED (Ours) 55.15 46.58

GraphCodeBERT
Two-stage 45.62 37.04
jLED (Ours) 55.71 47.20

CodeGPT
Two-stage 40.80 36.65
jLED (Ours) 49.90 42.71

PLBART
Two-stage 50.59 45.42
jLED (Ours) 54.78 48.84

CodeT5
Two-stage 32.96 31.51
jLED (Ours) 61.08 55.20

and Top-1 accuracy respectively. For PLBART, our approach improves the two-stage method by
4.19 and 3.42 for BLEU and Top-1 accuracy respectively. For CodeT5, compared to the two-stage
method, our proposed joint training approach outperforms it by 28.12 and 23.69 respectively.
These experimental results demonstrate the superiority and the significant improvement of our
proposed joint training approach over the two-stage method, so we can conclude that our joint
training is a better choice compared to the two-stage approach. The answer to RQ-3 can be denoted
as:

✍ Answer 3▶ The two-stage method, the editing performance of which heavily relies on the

localization model’s predicted line-level location, which means that, when the predicted line-level

location is incorrect, the generated edits in the next stage has a high probability of being wrong –

even the input content of location to be edited (E) is perfect, the generated edits are not 100% correct,

let alone the input location is wrong. Compared to it, our joint training pipeline does not totally

rely on the predicted localization results to generate the edits, so that the models could pay some

attention to the correct code lines, even if they are not with the highest probability scores. Based on

these experimental results, we conclude that our joint training pipeline is a better choice compared

to the two-stage method. ◀

6 Discussion

6.1 Compare to Another Existing Joint Learning Approach

Table 5. Experimental results compared to another existing joint learning method CodeT5-DLR.

Method
Editing results Localization results

BLEU Top-1 Acc. Top-1 Acc. Top-5 Acc.

CodeT5-DLR 26.84 21.38 24.29 57.38
jLED (Ours, using CodeT5) 61.08 55.20 77.07 89.33

To compare our proposed jLED with the existing joint learning approach CodeT5-DLR [4],
designed for bug detection, localization, and repair without natural language guidance, we conducted
an experiment on it. CodeT5-DLR utilizes the pre-trained CodeT5 as its base model, and fine-tune
it to process code snippets and simultaneously predict 1) the presence of bugs, 2) the location of
the buggy line, and 3) the repair results.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 19

In the context of our natural language-guided code editing, we fine-tune the CodeT5-DLR on
our dataset, during which we follow the pre-processing and tokenization process described in their
original paper, and take the tokenized code snippet as the input of the model. For the fine-tuning
loss function, as our task does not include the bug detection objective, we remove the binary
classifier for bug detection and only keep the localization and repair training objective.
The experimental results are illustrated in Table 5. We can observe that our jLED significantly

outperforms the CodeT5-DLR. This indicates that our approach is more suitable for the natural
language-guided code editing task compared to CodeT5-DLR. The underperformance of CodeT5-
DLR could be due to the lack of natural language guidance, which is essential for understanding
the specific purpose of each editing sample. Unlike bug repair, which only requires learning the
purpose and underlying patterns for fixing bugs, code editing involves a variety of modification
purposes. Therefore, while CodeT5-DLR performs well in bug repair without natural language
guidance, it struggles in code editing if the guidance is not provided.

6.2 Parameter Study

To investigate the impact of the hyperparameter 𝜆 in our joint learning loss function (Eq.9) on
different models, we conduct a parameter study using different values of 𝜆. We select the models
CodeBERT [13], GraphCodeBERT [16], CodeGPT [39], and CodeReviewer [29] for this analysis.

Theoretically, very small values of 𝜆 may lead to the under-optimization of the localization target,
thereby limiting the benefits to the editing target. In contrast, very large values may cause the
localization target to dominate the training process, leading to under-optimization of the editing
target. Therefore, it is crucial to determine an appropriate value of 𝜆 to balance the two optimization
objectives and achieve optimal code editing performance.

In this parameter study, for each model, we trained them using 𝜆 values of 0.01, 0.05, 0.1, 0.5, 1.0,
5.0, and 10.0. The results are presented in Table 6. It can be observed that when the value of 𝜆 is set
to 0.1, all these selected models achieve their best editing performance, which demonstrates that
0.1 is a suitable selection of the value of 𝜆 to balance the value scale of editing and localization loss.
In general, in deep learning model training, having two targets of equal importance does not

necessarily require assigning them identical loss weights. This is because gradient scales and
convergence speeds can vary significantly across different learning tasks. To some extent, this also
explains why a value like 0.1 is appropriate for 𝜆 in our scenario.

Moreover, for very large 𝜆 values, such as 100, the training becomes unstable due to the amplifi-
cation of the gradient by a factor of 100, which may even lead to gradient explosion. Therefore,
these values are deemed incompatible with our proposed method.

6.3 Experiments on Another Existing Code Edit/Refinement Dataset

To evaluate the generalizability of our proposed jLED over other datasets, we conduct experiments
on an existing code edit/refinement dataset used in the paper of CodeReviewer [29]. We apply
the same pre-processing method as described in Section 3.1 on this dataset. The experimental
results are presented in Table 7, where we show the results of CodeBERT [13], CodeT5 [71],
and CodeReviewer [29] with the training targets of editing baseline, localization baseline, our
proposed joint training targets (jLED), and the editing upperbound (training and inference with
all three modalities, i.e., [E <s> C <s> G]), respectively. From the experimental results, we can
observe that, compared to the editing baseline and the localization baseline, our proposed jLED
improves both of them significantly on all three models, further demonstrating the superiority and
generalizability of our proposed method.

Additionally, we observe that the gap between the editing baseline and the editing upper bound
is not as significant as that observed in our dataset. This is because our dataset contains more

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

20 Pian and Li et al.

Table 6. Parameter study on the value of 𝜆.

Model 𝜆
Editing results Localization results

BLEU Top-1 Acc. Top-1 Acc. Top-5 Acc.

CodeBERT

0.01 54.81 45.75 56.73 77.98
0.05 53.58 45.40 52.95 67.09
0.1 55.15 46.58 62.62 78.76
0.5 54.75 45.51 60.49 79.05
1.0 52.20 43.40 62.49 80.36
5.0 46.79 37.75 67.40 86.36
10.0 45.09 36.60 60.82 80.44

GraphCodeBERT

0.01 53.97 47.10 69.90 88.89
0.05 54.79 47.00 71.73 89.73
0.1 55.71 47.20 74.96 89.34
0.5 54.83 46.44 76.07 89.31
1.0 53.21 43.98 77.64 89.69
5.0 48.67 40.15 74.96 88.90
10.0 44.50 35.58 69.49 86.96

CodeGPT

0.01 48.84 42.18 46.93 84.07
0.05 48.11 41.82 58.82 86.04
0.1 49.90 42.71 62.49 85.28
0.5 46.93 39.95 59.24 85.33
1.0 42.18 36.60 63.09 86.00
5.0 46.92 38.89 60.75 86.15
10.0 44.64 36.64 60.95 86.07

CodeReviewer

0.01 60.16 55.02 57.62 90.22
0.05 60.42 55.15 69.24 91.05
0.1 61.23 55.64 72.38 89.93
0.5 60.08 54.71 78.33 90.22
1.0 60.04 54.51 76.78 90.33
5.0 55.77 49.36 68.55 90.35
10.0 54.38 47.11 69.62 90.58

code lines in each individual input sample, increasing the model’s training difficulty in generating
accurate edits without explicit location information. As a result, our dataset better represents the
real-world challenges of code editing tasks, providing a more rigorous benchmark for evaluating
model performance.

6.4 Threats to Validity

The internal threat to validity lies in the bias of the characteristic of the model in our pipeline.
To reduce this threats, we conduct experiments with different models for both baselines and our
proposed pipeline. Further, we consider that it is not fair to compare different approaches imple-
mented by different models, e.g., compare our joint training approach implemented by CodeBERT
to the CodeT5-based baseline, therefore, for fair comparison, we only compare different approaches
within the same model.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 21

Table 7. Experimental results on the Code Refinement dataset in the paper of CodeReviewer [29].

Model Modality Training target
Editing results Localization results

BLEU Top-1 Acc. Top-1 Acc. Top-5 Acc.

CodeBERT
[C <s> G]

Editing Baseline 42.25 24.80 - -
Localization Baseline - - 88.47 92.79

jLED (Ours) 46.81 28.30 92.98 98.05

[E <s> C <s> G] Editing Upperbound 47.68 30.18 - -

CodeT5
[C <s> G]

Editing Baseline 46.95 33.73 - -
Localization Baseline - - 93.61 97.80

jLED (Ours) 49.78 36.38 94.10 98.29

[E <s> C <s> G] Editing Upperbound 50.81 37.89 - -

CodeReviewer
[C <s> G]

Editing Baseline 47.88 36.67 - -
Localization Baseline - - 94.66 97.77

jLED (Ours) 49.38 38.44 94.70 99.15

[E <s> C <s> G] Editing Upperbound 50.59 38.49 - -

Threats of external validity refer to the dataset used for the experiment. To reduce this threat,
we construct a well-established dataset with high-quality data samples for training, validating, and
testing our approach and the baselines.

6.5 Limitations

Our approachmainly focuses on single-line source code editing. However, in the real-world scenario,
multi-line editing appears frequently, which limits our proposed approach to fully address the
complexities of real-world software development where multi-line editing is a common necessity.
This limitation potentially hinders the broad applicability of our method, particularly in situations
where changes span several lines of code, as is often the case in bug fixes, feature enhancements,
or code refactoring. To mitigate this, one potential solution is to employ binary cross-entropy
loss instead of the current standard cross-entropy loss during training, and set a threshold to
filter multiple results as the predicted lines. This adjustment would enable our model to predict
edits across multiple lines. Such a modification aims to enhance the localization capabilities of our
approach, allowing for simultaneous multi-line source code editing. In summary, we acknowledge
the complexity of integrating multi-line editing capabilities and recognize this as an area for future
work to be rigorously pursued and refined.

7 Related Work

7.1 Automatic Code Change

Thanks to the repetitiveness of code editing, researchers have proposed to automate several code
change tasks in the field of software engineering. One research direction aims to refactor existing
code without changing its functionality [14, 24, 43]. For example, Meng et al. [43] introduced RASE,
a highly advanced automated refactoring tool designed to eliminate redundancy in software code
through clone removal. The evaluation showed that RASE successfully removes clones in a signifi-
cant number of method pairs and groups with systematic edits, indicating the increased applicability
of automated refactoring based on these edits. Khatchadourian et al. [24] transformed legacy Java
code to leverage the new enumeration construct, improving type safety, code comprehension, sim-
plicity, and eliminating brittleness issues. It employs an interprocedural type inferencing algorithm
and has been evaluated on 17 Java benchmarks. Other research direction addresses the completion
or suggestion codes automatically [28, 53, 58, 59]. Svyatkovskiy et al. [58] proposed IntelliCode

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

22 Pian and Li et al.

Compose, a versatile code completion tool capable of generating syntactically correct code se-
quences and entire lines in multiple programming languages. Leveraging a generative transformer
model trained on extensive source code, IntelliCode Compose achieves high edit similarity and low
perplexity for edit-time completion suggestions in Visual Studio Code IDE and Azure Notebook.

Another direction that is widely recognized as significant is the automation of bug detection and
correction. With recent advances in deep learning, researchers proposed to use of NMT architecture
or pre-trained encoder or decoder for program repair [7, 8, 17, 22, 56, 64, 78]. Our study is related
to the last thrust. The evaluations conducted on the tasks showed promising results in automatic
code change. Nevertheless, we argue that previous studies often assume the availability of a perfect
edit location, such as fault location in program repair, which is not typically the case in real-world
scenarios. Our objective is to fill this gap by jointly learning the localization and editing of source
code.

7.2 Code Change Modeling

The code change modeling plays a crucial role in code-related tasks [9, 11–13, 18, 60]. To learn
distributed representations, Hoang et al. [18] utilized deep learning models to create CC2Vec,
an approach of representing patches through sequence learning on code change. CC2Vec was
evaluated as effective as the state of the arts on three patch tasks: generating patch descriptions,
identifying bug-fixing patches, and just-in-time defect prediction. Similarly, CoDiSum [75] is a
token-based approach to patch representation, particularly useful in generating patch descriptions.
Moreover, Tufano et al. [67, 68] investigated the usage of NMT for general-purpose code changes
learning. Recently, large pre-trained code models have been further re-pre-trained on code change
datasets to obtain large pre-trained code change models [30, 37, 83].
The utility and adaptability of large-scale language models (LLMs) extend beyond natural lan-

guage processing tasks. The BERT architecture [10], for instance, encodes both the left and right
context of a token, making it adapted for the tasks of interpretation and generation of code that
often relies heavily on the surrounding context. Several studies have revealed the efficacy of these
models in handling source code. CodeBERT [13] and GraphCodeBERT [16], both derivatives of
the BERT architecture, have shown considerable promise in understanding code semantics. Code-
BERT is designed to tackle programming tasks by learning from bilingual data, including natural
language and code, while GraphCodeBERT incorporates structural information from code into the
pre-training process for a better understanding of the dependencies within the code. Furthermore,
PLBART [1] and CodeT5 [71] have demonstrated substantial effectiveness in code translation and
summarization tasks. PLBART, an encoder-decoder model, is specifically designed for programming
language tasks. It leverages a large-scale bilingual corpus to learn a unified representation that
captures the semantics of code. CodeT5, yet another encoder-decoder model, extend the T5 model
by incorporating a code tokenizer and a new pre-training objective, making it successful in the
task of code defect detection and clone detection.
Because of the outstanding representation ability of these pre-trained models on source code,

they have also been widely adapted to various code change tasks such as program repair [61, 62,
65, 80], commit message generation [23, 55, 66] or code recommendation [69, 82]. In our proposed
methodology, we initially harness the power of pre-trained LLMs as a fundamental architecture
to represent both code and natural language. Subsequently, the weights of the LLMs are jointly
optimized to learn to localize and repair bugs effectively. This approach allows the model to
continually evolve and adapt, thereby enhancing its capability to perform code change tasks.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 23

8 Conclusion

In this paper, we investigate the performance of existing standard sequence-to-sequence multi-
modal learning for code editing under a more practical situation, in which the precise line-level
location information is unknown or unavailable. Through comprehensive experiments, we have
confirmed that the models are not able to generate precise edits after training without exact
line-level location information. To tackle this challenge, we proposed jLED (jointly Localize and
EDit), a training pipeline to jointly learn to localize the edit buggy code simultaneously, which
enables models to learn additional knowledge and abilities regarding the line-level localization
while learning to edit. We conduct experiments using our proposed jLED, and the experimental
results show that our approach not only generates more precise edits, but also predicts more
accurate line-level locations than the considered baselines. Moreover, to evaluate the effectiveness
of our joint learning pipeline against other localization and editing alternatives, we construct a
two-stage localization-editing pipeline, in which a localization model and an editing model are
trained separately. Experimental results demonstrate the superiority of our jLED over this two-stage
manner.

Acknowledgements

This work is supported by the NATURAL project, which has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant No. 949014).

References

[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-training for Program
Understanding and Generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. 2655–2668.
[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A transformer-based approach for

source code summarization. arXiv preprint arXiv:2005.00653 (2020).
[3] Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. Arabert: Transformer-based model for arabic language understand-

ing. arXiv preprint arXiv:2003.00104 (2020).
[4] Nghi Bui, Yue Wang, and Steven CH Hoi. 2022. Detect-Localize-Repair: A Unified Framework for Learning to Debug

with CodeT5. In Findings of the Association for Computational Linguistics: EMNLP 2022. 812–823.
[5] Rich Caruana. 1997. Multitask learning. Machine learning 28 (1997), 41–75.
[6] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T Devanbu, and Baishakhi Ray. 2022. NatGen: gen-

erative pre-training by “naturalizing” source code. In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 18–30.
[7] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. 2020. Codit: Code editing with tree-based

neural models. IEEE Transactions on Software Engineering 48, 4 (2020), 1385–1399.
[8] Saikat Chakraborty and Baishakhi Ray. 2021. On multi-modal learning of editing source code. In 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 443–455.
[9] Daniel DeFreez, Aditya V Thakur, and Cindy Rubio-González. 2018. Path-based function embedding and its application

to error-handling specification mining. In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. 423–433.
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies. 4171–4186. https://doi.org/10.18653/v1/n19-
1423

[11] Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, Wenjie Zhang, and Dan Hao. 2022. FIRA: Fine-Grained
Graph-Based Code Change Representation for Automated Commit Message Generation. (2022).

[12] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia Severini, Florian Matthes,
and Burkhard Rost. 2021. CodeTrans: Towards Cracking the Language of Silicon’s Code Through Self-Supervised
Deep Learning and High Performance Computing. arXiv preprint arXiv:2104.02443 (2021).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

24 Pian and Li et al.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Findings of the

Association for Computational Linguistics: EMNLP 2020. 1536–1547.
[14] Xi Ge and Emerson Murphy-Hill. 2014. Manual refactoring changes with automated refactoring validation. In

Proceedings of the 36th International Conference on Software Engineering. 1095–1105.
[15] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12

(2019), 56–65.
[16] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long Zhou, Nan Duan, Alexey Svyatkovskiy,

Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with Data Flow. In International Conference on

Learning Representations (ICLR).
[17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fixing common c language errors by

deep learning. In Proceedings of the aaai conference on artificial intelligence.
[18] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. Cc2vec: Distributed representations of code changes.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 518–529.
[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment generation with hybrid lexical and syntactical

information. Empirical Software Engineering 25 (2020), 2179–2217.
[20] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, and Rahul

Sharma. 2022. Jigsaw: Large languagemodels meet program synthesis. In Proceedings of the 44th International Conference
on Software Engineering. 1219–1231.

[21] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code Language Models on Automated Program
Repair. arXiv preprint arXiv:2302.05020 (2023).

[22] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine translation for automatic program
repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[23] Tae-Hwan Jung. 2021. Commitbert: Commit message generation using pre-trained programming language model.
arXiv preprint arXiv:2105.14242 (2021).

[24] Raffi Khatchadourian. 2017. Automated refactoring of legacy Java software to enumerated types. Automated Software

Engineering 24, 4 (2017), 757–787.
[25] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In International Conference on

Learning Representations (ICLR), Yoshua Bengio and Yann LeCun (Eds.).
[26] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and

detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations. 66–71.
[27] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,

and Luke Zettlemoyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics. 7871–7880.
[28] Jian Li, Yue Wang, Michael R Lyu, and Irwin King. 2018. Code completion with neural attention and pointer networks.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence. 4159–25.
[29] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared Green, Alexey Svy-

atkovskiy, Shengyu Fu, et al. 2022. Automating code review activities by large-scale pre-training. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
1035–1047.

[30] Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao. 2023. Cct5: A code-change-oriented
pre-trained model. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 1509–1521.
[31] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2020. A self-attentional neural architecture for code

completion with multi-task learning. In Proceedings of the 28th International Conference on Program Comprehension.
37–47.

[32] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2022. A unified multi-task learning model for AST-level and
token-level code completion. Empirical Software Engineering 27, 4 (2022), 91.

[33] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-trained language model for code
completion. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 473–485.

[34] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: Revisiting template-based automated
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
31–42.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 25

[35] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task Deep Neural Networks for Natural
Language Understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
4487–4496.

[36] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[37] Zhongxin Liu, Zhijie Tang, Xin Xia, and Xiaohu Yang. 2023. Ccrep: Learning code change representations via pre-
trained code model and query back. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 17–29.

[38] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang. 2020. Can automated
program repair refine fault localization? a unified debugging approach. In Proceedings of the 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis. 75–87.
[39] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain,

Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, MING GONG, Ming Zhou,
Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU. 2021. CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Generation. In Thirty-fifth Conference on Neural Information Processing

Systems Datasets and Benchmarks Track (Round 1).
[40] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut: combining

context-aware neural translation models using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT

international symposium on software testing and analysis. 101–114.
[41] Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy Ranganathan, Yiming Yang, Graham

Neubig, and Amir Yazdanbakhsh. 2023. Learning performance-improving code edits. arXiv preprint arXiv:2302.07867
(2023).

[42] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying codebert for automated program repair of java simple bugs. In
2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). IEEE, 505–509.

[43] Na Meng, Lisa Hua, Miryung Kim, and Kathryn S McKinley. 2015. Does automated refactoring obviate systematic
editing?. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 392–402.

[44] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Sydit: Creating and applying a program transformation from
an example. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of

software engineering. 440–443.
[45] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Systematic editing: generating program transformations from

an example. ACM SIGPLAN Notices 46, 6 (2011), 329–342.
[46] Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and applying systematic edits by learning

from examples. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 502–511.
[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,

Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

[48] Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi Jin. 2021. Integrating tree path in transformer for code
representation. Advances in Neural Information Processing Systems 34 (2021), 9343–9354.

[49] Weiguo Pian, Hanyu Peng, Xunzhu Tang, Tiezhu Sun, Haoye Tian, Andrew Habib, Jacques Klein, and Tegawendé F
Bissyandé. 2023. MetaTPTrans: A meta learning approach for multilingual code representation learning. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 37. 5239–5247.
[50] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research 21, 1 (2020), 5485–5551.

[51] Sarah Rastkar and Gail C Murphy. 2013. Why did this code change?. In 2013 35th International Conference on Software

Engineering (ICSE). IEEE, 1193–1196.
[52] Baishakhi Ray, Meiyappan Nagappan, Christian Bird, Nachiappan Nagappan, and Thomas Zimmermann. 2015. The

uniqueness of changes: Characteristics and applications. In 2015 IEEE/ACM 12th Working Conference on Mining Software

Repositories. IEEE, 34–44.
[53] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In Proceedings

of the 35th ACM SIGPLAN conference on programming language design and implementation. 419–428.
[54] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv preprint arXiv:1706.05098

(2017).
[55] Ensheng Shi, Yanlin Wang, Wei Tao, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun. 2022. RACE:

Retrieval-Augmented Commit Message Generation. arXiv preprint arXiv:2203.02700 (2022).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

26 Pian and Li et al.

[56] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An analysis of the automatic bug fixing
performance of chatgpt. arXiv preprint arXiv:2301.08653 (2023).

[57] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. Advances in
neural information processing systems 27 (2014).

[58] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation
using transformer. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 1433–1443.
[59] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia: Ai-assisted code completion system.

In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2727–2735.
[60] Xunzhu Tang, Haoye Tian, Zhenghan Chen, Weiguo Pian, Saad Ezzini, Abdoul Kader Kaboré, Andrew Habib, Jacques

Klein, and Tegawendé F Bissyandé. 2024. Learning to Represent Patches. In Proceedings of the 2024 IEEE/ACM 46th

International Conference on Software Engineering: Companion Proceedings. 396–397.
[61] Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kabore, Kui Liu, Andrew Habib, Jacques Klein, and Tegawendé F

Bissyandé. 2022. Predicting Patch Correctness Based on the Similarity of Failing Test Cases. ACM Transactions on

Software Engineering and Methodology (TOSEM) 31, 4 (2022), 1–30.
[62] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and Tegawendé F Bissyandé. 2020.

Evaluating representation learning of code changes for predicting patch correctness in program repair. In Proceedings

of the 35th IEEE/ACM International Conference on Automated Software Engineering. 981–992.
[63] Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil Koyuncu, Andrew Habib, Li Li, Junhao Wen, Jacques

Klein, and Tegawendé F Bissyandé. 2023. The Best of Both Worlds: Combining Learned Embeddings with Engineered
Features for Accurate Prediction of Correct Patches. ACM Transactions on Software Engineering and Methodology

(2023).
[64] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and Tegawendé F Bissyandé. 2023.

Is ChatGPT the Ultimate Programming Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).
[65] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu, Xin Xia, Jacques Klein, and TegawendÉ F

BissyandÉ. 2022. Is this Change the Answer to that Problem? Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness. In 37th IEEE/ACM International Conference on Automated Software Engineering. 1–13.

[66] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What makes a good commit message?. In
Proceedings of the 44th International Conference on Software Engineering. 2389–2401.

[67] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshyvanyk. 2019. On learning
meaningful code changes via neural machine translation. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 25–36.
[68] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019.

An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Transactions on

Software Engineering and Methodology (TOSEM) 28, 4 (2019), 1–29.
[69] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota.

2022. Using pre-trained models to boost code review automation. In Proceedings of the 44th International Conference on

Software Engineering. 2291–2302.
[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
[71] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-

Decoder Models for Code Understanding and Generation. In Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing. 8696–8708.
[72] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer learning. Journal of Big data 3, 1

(2016), 1–40.
[73] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, et al. 2020. Transformers: State-of-the-art natural language processing. In
Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations. 38–45.

[74] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[75] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu. 2019. Commit message generation for
source code changes. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. 3975–3981.

[76] Boyang Yang, Haoye Tian, Weiguo Pian, Haoran Yu, Haitao Wang, Jacques Klein, Tegawendé F Bissyandé, and Shunfu
Jin. 2024. CREF: An LLM-based Conversational Software Repair Framework for Programming Tutors. arXiv preprint
arXiv:2406.13972 (2024).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

You Don’t Have to Say Where to Edit!

jLED – Joint Learning to Localize and Edit Source Code 27

[77] Boyang Yang, Haoye Tian, Jiadong Ren, Hongyu Zhang, Jacques Klein, Tegawendé F Bissyandé, Claire Le Goues, and
Shunfu Jin. 2024. Multi-Objective Fine-Tuning for Enhanced Program Repair with LLMs. arXiv preprint arXiv:2404.12636
(2024).

[78] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair with execution-based backpropagation.
In Proceedings of the 44th International Conference on Software Engineering. 1506–1518.

[79] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-purpose code generation. arXiv
preprint arXiv:1704.01696 (2017).

[80] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin Monperrus. 2019. Alleviating patch
overfitting with automatic test generation: a study of feasibility and effectiveness for the Nopol repair system. Empirical

Software Engineering 24 (2019), 33–67.
[81] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2022. Coditt5: Pretraining for

source code and natural language editing. In Proceedings of the 37th IEEE/ACM International Conference on Automated

Software Engineering. 1–12.
[82] Shufan Zhou, Beijun Shen, and Hao Zhong. 2019. Lancer: Your code tell me what you need. In 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 1202–1205.
[83] Xin Zhou, Bowen Xu, DongGyun Han, Zhou Yang, Junda He, and David Lo. 2023. CCBERT: Self-Supervised Code

Change Representation Learning. In 2023 IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 182–193.

[84] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann. 2021. Language-
Agnostic Representation Learning of Source Code from Structure and Context. In International Conference on Learning

Representations (ICLR 2019).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2025.

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Neural Machine Translation
	2.2 Transformer Model for Sequence Processing
	2.3 Transfer Learning for Source Code

	3 Approach
	3.1 Input Modalities, Data Collection and Pre-processing
	3.2 Models
	3.3 Optimization
	3.4 Inference

	4 Experimental Design
	4.1 Dataset
	4.2 Data Preparation
	4.3 Training
	4.4 Evaluation Metric
	4.5 Research Questions

	5 Experimental Results
	5.1 Experimental Setup for RQ-1
	5.2 Experimental Results for RQ-1
	5.3 Experimental Setup for RQ-2
	5.4 Experimental results for RQ-2
	5.5 Experimental Setup for RQ-3
	5.6 Experimental results for RQ-3

	6 Discussion
	6.1 Compare to Another Existing Joint Learning Approach
	6.2 Parameter Study
	6.3 Experiments on Another Existing Code Edit/Refinement Dataset
	6.4 Threats to Validity
	6.5 Limitations

	7 Related Work
	7.1 Automatic Code Change
	7.2 Code Change Modeling

	8 Conclusion
	References

